Z-band cross sections in rigor skeletal muscle have similar detailed structures as in tetanized muscle

Author(s):  
M. A. Goldstein ◽  
J. P. Schroeter ◽  
R. J. Edwards

We have previously shown that two structural states of the Z-band in muscle cross-sections are related to the contractile state of the muscle. In skeletal muscle at rest, the z-band is in the small square (ss) form, but tetanized muscle exhibits the basket weave (bw) form. Recently, we have shown that skeletal muscle in rigor also exhibits the bw form and dimensions.We have used two dimensional computer enhancement techniques on digitized electron micrographs to compare the detailed structure of the tetanized and rigor Z-band lattices. Both lattice averaging and Fourier filtering techniques were used, with enhanced images displayed as grey-scale projections, as contour maps, and in false color. There is only a slight difference between the lattices produced by the two different enhancement techniques. Thus, information in the enhanced images is not likely to be an artifact of the enhancement algorithm.

Author(s):  
J.P. Schroeter ◽  
M.A. Goldstein ◽  
J.P. Bretaudiere ◽  
L.H. Michael ◽  
R.L. Sass

We have recently established the existence of two structural states of the Z band lattice in cross section in cardiac as well as in skeletal muscle. The two structural states are related to the contractile state of the muscle. In skeletal muscle at rest, the Z band is in the small square (ss) lattice form, but tetanized muscle exhibits the basket weave (bw) form. In contrast, unstimu- lated cardiac muscle exhibits the bw form, but cardiac muscles exposed to EGTA show the ss form.We have used two-dimensional computer enhancement techniques on digitized electron micrographs to compare each lattice form as it appears in both cardiac and skeletal muscle. Both real space averaging and fourier filtering methods were used. Enhanced images were displayed as grey-scale projections, as contour maps, and in false color.There is only a slight difference between the lattices produced by the two different enhancement techniques. Thus the information presented in these images is not likely to be an artifact of the enhancement algorithm.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170635 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
K. R. Daly ◽  
G. F. Clough ◽  
P. Schneider ◽  
T. Roose

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, especially for skeletal muscle during exercise. Traditionally, microvascular oxygen supply capability is assessed by the analysis of morphological measures on transverse cross-sections of muscle, e.g. capillary density or capillary-to-fibre ratio. In this work, we investigate the relationship between microvascular structure and muscle tissue oxygenation in mice. Phase contrast imaging was performed using synchrotron radiation computed tomography (SR CT) to visualize red blood cells (RBCs) within the microvasculature in mouse soleus muscle. Image-based mathematical modelling of the oxygen diffusion from the RBCs into the muscle tissue was subsequently performed, as well as a morphometric analysis of the microvasculature. The mean tissue oxygenation was then compared with the morphological measures of the microvasculature. RBC volume fraction and spacing (mean distance of any point in tissue to the closest RBC) emerged as the best predictors for muscle tissue oxygenation, followed by length density (summed RBC length over muscle volume). The two-dimensional measures of capillary density and capillary-to-fibre ratio ranked last. We, therefore, conclude that, in order to assess the states of health of muscle tissue, it is advisable to rely on three-dimensional morphological measures rather than on the traditional two-dimensional measures.


1982 ◽  
Vol 22 (1) ◽  
pp. 205 ◽  
Author(s):  
G. M. Philip ◽  
D. F. Watson

Although the petroleum geologist is concerned with analysing three-dimensional data, he relies entirely on two-dimensional portrayals - cross-sections and particularly contour maps of all types. With the advent of digital computers, machine contouring has become increasingly common, but little attention has been directed to the limitations of the various algorithms that can be employed to generate contour maps from a set of control points. For example, it is not widely appreciated that contouring procedures which faithfully honour the value of original control points produce poor predictions at locations where no control is available. Contouring a published set of topographic data shows how this and other limitations lead to approximations and errors in machine-generated contours.A new method based on triangulation interpolation using Delaunay tessellations (deltri analysis) is superior to existing methods. Not only does the method give the most accurate and objective measurement and display of the contoured surface, but it is also computationally efficient. Rapid calculation of volume of closure over contoured structures is possible. The method also allows estimation of the adequacy of the data on which the contouring is based by introducing a measure of 'roughness' of the surface. This is achieved by analysing the directions of normals to triangles surrounding each control point.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


2004 ◽  
Vol 166 (5) ◽  
pp. 685-696 ◽  
Author(s):  
Anthony J. Kee ◽  
Galina Schevzov ◽  
Visalini Nair-Shalliker ◽  
C. Stephen Robinson ◽  
Bernadette Vrhovski ◽  
...  

Tropomyosin (Tm) is a key component of the actin cytoskeleton and >40 isoforms have been described in mammals. In addition to the isoforms in the sarcomere, we now report the existence of two nonsarcomeric (NS) isoforms in skeletal muscle. These isoforms are excluded from the thin filament of the sarcomere and are localized to a novel Z-line adjacent structure. Immunostained cross sections indicate that one Tm defines a Z-line adjacent structure common to all myofibers, whereas the second Tm defines a spatially distinct structure unique to muscles that undergo chronic or repetitive contractions. When a Tm (Tm3) that is normally absent from muscle was expressed in mice it became associated with the Z-line adjacent structure. These mice display a muscular dystrophy and ragged-red fiber phenotype, suggestive of disruption of the membrane-associated cytoskeletal network. Our findings raise the possibility that mutations in these tropomyosin and these structures may underpin these types of myopathies.


2002 ◽  
Vol 92 (2) ◽  
pp. 435-445 ◽  
Author(s):  
Kevin Culligan ◽  
Niamh Banville ◽  
Paul Dowling ◽  
Kay Ohlendieck

Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca2+ handling may be involved in myonecrosis, we investigated the fate of key Ca2+ regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca2+-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150–220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca2+ binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca2+ binding proteins might be directly involved in triggering impaired Ca2+ sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca2+ fluxes seem to influence overall Ca2+homeostasis, resulting in distinct changes in the expression profile of a subset of Ca2+ handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.


Sign in / Sign up

Export Citation Format

Share Document