High-voltage electron microscopic study in the syndrome of myalgia and cramps

Author(s):  
M.J. Song ◽  
R.P. Lazaro ◽  
L. Principe ◽  
D.F. Parsons

Muscle pain and cramps are neuromuscular symptoms of diverse etiology. When these symptoms are associated with exercise, a biochemical defect in glycolytic or lipid metabolism, a mitochondrial myopathy, or defect in muscle contraction is frequently suspected. Diagnosis is usually established when such defect is demonstrated histochemically or by NMR. In some neuromuscular disorders, these symptoms may not necessarily be induced by exercise and they are usually part of a wide constellation of symptoms. Some of them are distinct enough to be recognized clinically or electrophysiologically, as in peripheral neuropathies, myotonias, or syndromes of continuous muscle activity. However, despite modern histochemical techniques, a number of muscle disorders remain, characterized primarily by muscle pain and cramps, where light microscopy or electrophysiologic studies show either normal or nonspecific findings.

Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Author(s):  
A.S. Lossinsky ◽  
M.J. Song

Previous studies have suggested the usefulness of high-voltage electron microscopy (HVEM) for investigating blood-bram barrier (BBB) injury and the mechanism of inflammatory-cell (IC) attachment. These studies indicated that, in evaluating standard conventional thin sections, one might miss cellular attachment sites of ICs in their process of attaching to the luminal endothelial cell (EC) surface of cerebral blood vessels. Our current studies in animals subjected to autoimmune disease suggest that HVEM may be useful in localizing precise receptor sites involved in early IC attachment.Experimental autoimmune encephalomyelitis (EAE) was induced in mice and rats according to standard procedures. Tissue samples from cerebellum, thalamus or spinal cords were embedded in plastic following vascular perfusion with buffered aldehyde. Thick (0.5-0.7 μm) sections were cut on glass knives and collected on Formvar-coated slot grids stained with uranylacetate and lead citrate and examined with the AEI EM7 1.2 MV HVEM in Albany, NY at 1000 kV.


2021 ◽  
Vol 22 (8) ◽  
pp. 4236
Author(s):  
Amelia Eva Aránega ◽  
Estefanía Lozano-Velasco ◽  
Lara Rodriguez-Outeiriño ◽  
Felicitas Ramírez de Acuña ◽  
Diego Franco ◽  
...  

microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).


1987 ◽  
Vol 87 (4) ◽  
pp. 565-580
Author(s):  
M.E. Stearns ◽  
M. Wang

We have re-examined the involvement of microtubules in the process of pigment granule transport in squirrelfish erythrophores in situ (i.e. on scales). Light-microscopic studies revealed that following exposure to 5 microM-nocodazole for 1 h at 4 degrees C erythrophores retained an ability to aggregate and disperse their pigment uniformly, though at reduced rates. Serial thick-section stereo high-voltage electron-microscopic studies showed that the entire microtubule population was removed by drug treatment and that the microtubules were not reassembled as a result of pigment translocation processes in the presence of reduced levels of nocodazole (0.4 microM). Immunofluorescence microscopic studies confirmed that nocodazole (0.5-1 microM) produced rapid disassembly of the microtubules. Whole-mount electron-microscopic studies showed that the pigment granules were suspended in a cross-linking network of 3–10 nm filaments, which appeared to support ordered pigment transport in situ in the absence of microtubules. Drug inhibition studies showed that micromolar levels of estramustine, a novel anti-MAPs (microtubule-associated proteins) drug, reversibly inhibited pigment transport. The results suggest that an estramustine-sensitive cytomatrix component might produce polarized pigment transport in intact erythrophores.


2018 ◽  
pp. 136-139
Author(s):  
Jennifer Repanshek

The case illustrates the classic clinical features and emergent management of rhabdomyolysis. The pathophysiology results from the breakdown of muscle from intense exercise, drug or alcohol use, seizure activity, trauma, heat illness, or muscle disorders. The clinical history is of a severe muscle pain, sometimes focused on a single muscle group or extremity but often diffuse. Rhabdomyolysis should be suspected in a patient with vague complaints of muscle pain, and an elevation in creatine kinase is diagnostic in this clinical picture. Patients who have been diagnosed with rhabdomyolysis must also be carefully evaluated for compartment syndrome. The mainstay of treatment is aggressive intravenous fluid administration. Serial creatine kinase values as well as the patient’s evolving clinical status should guide further management.


1981 ◽  
Vol 3 (3) ◽  
pp. 277-287 ◽  
Author(s):  
Yukio Fukuyama ◽  
Yoko Suzuki ◽  
Yoshito Hirayama ◽  
Junko Harada ◽  
Makiko Ohsawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document