Analytical electron microscopy of grain boundaries in Al-Cu metallizations

Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits, the Cu being added since it improves resistance to electromigration failure. As linewidths decrease to submicrometer dimensions, the current density carried by the interconnect increases dramatically and the probability of electromigration failure increases. To increase the robustness of the interconnect lines to this failure mode, an understanding of the mechanism by which Cu improves resistance to electromigration is needed. A number of theories have been proposed to account for role of Cu on electromigration behavior and many of the theories are dependent of the elemental Cu distribution in the interconnect line. However, there is an incomplete understanding of the distribution of Cu within the Al interconnect as a function of thermal history. In order to understand the role of Cu in reducing electromigration failures better, it is important to characterize the Cu distribution within the microstructure of the Al-Cu metallization.

1991 ◽  
Vol 229 ◽  
Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

AbstractAl with additions of Cu is commonly used as the conductor metallizations for integrated circuits (ICs). As the packing density of ICs increases, interconnect lines are required to carry ever higher current densities. Consequently, reliability due to electromigration failure becomes an increasing concern. Cu has been found to increase the lifetimes of these conductors, but the mechanism by which electromigration is improved is not yet fully understood. In order to evaluate certain theories of electromigration it is necessary to have a detailed description of the Cu distribution in the Al microstructure, with emphasis on the distribution of Cu at the grain boundaries. In this study analytical electron microscopy (AEM) has been used to characterize grain boundary regions in an Al-2 wt.% Cu thin film metallization on Si after a variety of thermal treatments. The results of this study indicate that the Cu distribution is dependent on the thermal annealing conditions. At temperatures near the θ phase (CuAl2) solvus, the Cu distribution may be modelled by the collector plate mechanism, in which the grain boundary is depleted in Cu relative to the matrix. At lower temperatures, Cu enrichment of the boundaries occurs, perhaps as a precursor to second phase formation. Natural cooling from the single phase field produces only grain boundary depletion of Cu consistent with the collector-plate mechanism. The kinetic details of the elemental segregation behavior derived from this study can be used to describe microstructural evolution in actual interconnect alloys.


1990 ◽  
Vol 151 (1) ◽  
pp. 371-385
Author(s):  
N. H. SPARKS ◽  
P. J. MOTTA ◽  
R. P. SHELLIS ◽  
V. J. WADE ◽  
S. MANN

Iron is known to be a common constituent of vertebrate teeth, yet little is known about the form it takes or the extent to which it modifies the structural properties of the tooth. Analytical electron microscopy was used to study the iron-rich tooth cap of the butterflyfish Chaetodon ornatissimus Cuvier, 1831. Images of thin sections of the tooth cap showed three distinct layers of hydroxyapatite crystals; a densely packed cuticle, a crystallographically organized superficial enameloid and randomly oriented inner enameloid. Energy dispersive X-ray analysis (edXa) showed that iron was concentrated in the cuticular layer of the tooth cap, the concentration increasing to a maximum at the tip. Elemental analysis showed the level of calcium to be inversely related to iron concentration. An identical relationship was found for synthetic iron-doped hydroxyapatite. The implications of these results for the functional role of iron in the tooth caps are discussed.


Author(s):  
M. Isaacson ◽  
M.L. Collins ◽  
M. Listvan

Over the past five years it has become evident that radiation damage provides the fundamental limit to the study of blomolecular structure by electron microscopy. In some special cases structural determinations at very low doses can be achieved through superposition techniques to study periodic (Unwin & Henderson, 1975) and nonperiodic (Saxton & Frank, 1977) specimens. In addition, protection methods such as glucose embedding (Unwin & Henderson, 1975) and maintenance of specimen hydration at low temperatures (Taylor & Glaeser, 1976) have also shown promise. Despite these successes, the basic nature of radiation damage in the electron microscope is far from clear. In general we cannot predict exactly how different structures will behave during electron Irradiation at high dose rates. Moreover, with the rapid rise of analytical electron microscopy over the last few years, nvicroscopists are becoming concerned with questions of compositional as well as structural integrity. It is important to measure changes in elemental composition arising from atom migration in or loss from the specimen as a result of electron bombardment.


Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
N. Ridley ◽  
S.A. Al-Salman ◽  
G.W. Lorimer

The application of the technique of analytical electron microscopy to the study of partitioning of Mn (1) and Cr (2) during the austenite-pearlite transformation in eutectoid steels has been described in previous papers. In both of these investigations, ‘in-situ’ analyses of individual cementite and ferrite plates in thin foils showed that the alloying elements partitioned preferentially to cementite at the transformation front at higher reaction temperatures. At lower temperatures partitioning did not occur and it was possible to identify a ‘no-partition’ temperature for each of the steels examined.In the present work partitioning during the pearlite transformation has been studied in a eutectoid steel containing 1.95 wt% Si. Measurements of pearlite interlamellar spacings showed, however, that except at the highest reaction temperatures the spacing would be too small to make the in-situ analysis of individual cementite plates possible, without interference from adjacent ferrite lamellae. The minimum diameter of the analysis probe on the instrument used, an EMMA-4 analytical electron microscope, was approximately 100 nm.


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


Sign in / Sign up

Export Citation Format

Share Document