LACBED with Quantitative Anomalous Absorption Corrections

Author(s):  
C.J. Rossouw ◽  
L.J. Allen ◽  
P.R. Miller

An Einstein model for thermal diffuse scattering (TDS) has enabled quantitative calculation of the absorptive potential V'(r). This allows anomalous absorption to be accounted for in LACBED contrast. Fourier coefficients Vg-h of the absorptive component from each atom α are calculated from integrals of the formwhere fα is the scattering amplitude and M(Q) the Debye-Waller factor. Integration over the Ewald sphere (dΩ) requires the momentum transfer q to have values up to 2ko (the incident beam momentum). Dynamical ‘dechannelling’ is accounted for by the terms g ≠ h. The crystal absorptive potential is obtained by coherently summing over these atomic absorptive potentials within the unit cell. Unlike the elastic potential, the absorptive potential is a strong function of incident beam energy Eo, since the range of momentum transfer q and associated solid angles dΩ change with the Ewald sphere radius.Fig. 1 shows a LACBED pattern of the zeroth order beam from Si aligned along a <001> zone axis.

Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
J. H. Butler ◽  
C. J. Humphreys

Electromagnetic radiation is emitted when fast (relativistic) electrons pass through crystal targets which are oriented in a preferential (channelling) direction with respect to the incident beam. In the classical sense, the electrons perform sinusoidal oscillations as they propagate through the crystal (as illustrated in Fig. 1 for the case of planar channelling). When viewed in the electron rest frame, this motion, a result of successive Bragg reflections, gives rise to familiar dipole emission. In the laboratory frame, the radiation is seen to be of a higher energy (because of the Doppler shift) and is also compressed into a narrower cone of emission (due to the relativistic “searchlight” effect). The energy and yield of this monochromatic light is a continuously increasing function of the incident beam energy and, for beam energies of 1 MeV and higher, it occurs in the x-ray and γ-ray regions of the spectrum. Consequently, much interest has been expressed in regard to the use of this phenomenon as the basis for fabricating a coherent, tunable radiation source.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


Author(s):  
Niraj Kumar Rai ◽  
Aman Gandhi ◽  
M T Senthil Kannan ◽  
Sujan Kumar Roy ◽  
Saneesh Nedumbally ◽  
...  

Abstract The pre-scission and post-scission neutron multiplicities are measured for the 18O + 184W reaction in the excitation energy range of 67.23−76.37 MeV. Langevin dynamical calculations are performed to infer the energy dependence of fission decay time in compliance with the measured neutron multiplicities. Different models for nuclear dissipation are employed for this purpose. Fission process is usually expected to be faster at a higher beam energy. However, we found an enhancement in the average fission time as the incident beam energy increases. It happens because a higher excitation energy helps more neutrons to evaporate that eventually stabilizes the system against fission. The competition between fission and neutron evaporation delicately depends on the available excitation energy and it is explained here with the help of the partial fission yields contributed by the different isotopes of the primary compound nucleus.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Robert C. Cammarata ◽  
John C. Bilello ◽  
A. Lindsay Greer ◽  
Karl Sieradzki ◽  
Steven M. Yalisove

Almost all thin films deposited on a substrate are in a state of stress. Fifty years ago pioneering work concerning the measurement of thin-film stresses was conducted by Brenner and Senderoff. They electroplated a metal film onto a thin metal substrate strip fixed at one end and measured the deflection of the free end of the substrate with a micrometer. Using a beam-bending analysis, they were able to calculate a residual stress from the measured deflection of the bimetallic film-substrate system. A variety of other, more sensitive methods of measuring the curvature of the surface of a film-substrate system have since been developed using, for example, capacitance measurements and interferometry techniques.When a monochromatic x-ray beam is incident onto a curved single crystal, the diffraction condition is satisfied only for regions of the crystal where the inclination angle with respect to the incident beam exactly matches the Bragg angle. When a parallel beam plane-wave source is used, the diffracted beam from a particular set of (hkl) planes gives rise to a single narrow-contour band. If the crystal is rocked by an angle ω, the contour band will move by a certain distance D. The radius of curvature R of the crystal lattice planes is given bywhere θ is the Bragg angle. Equal rocking angles produce equivalent D values for uniform curvature, or varied D values for nonuniform curvature. Using this procedure, detailed contour maps of the angular displacement field of the crystal can be mapped in two dimensions.


1997 ◽  
Vol 3 (S2) ◽  
pp. 881-882 ◽  
Author(s):  
Dale E. Newbury

Throughout the history of electron-beam X-ray microanalysis, analysts have made good use of the strong dependence of electron range on incident energy (R ≈ E1,7) to optimize the analytical volume when attacking certain types of problems, such as inclusions in a matrix or layered specimens. The “conventional” energy range for quantitative electron beam X-ray microanalysis can be thought of as beginning at 10 keV and extending to the upper limit of the accelerating potential, typically 30 - 50 keV depending on the instrument. The lower limit of 10 keV is selected because this is the lowest incident beam energy for which there is a satisfactory analytical X-ray peak excited from the K-, L-, or M- shells (in a few cases, two shells are simultaneously excited, e.g., Fe-K and Fe-L) for every element in the Periodic Table that is accessible to X-ray spectrometry, beginning with Be (Ek =116 eV) and extending to the transuranic elements. This criterion is based upon establishing a minimum overvoltage U = E0/Ec > 1.25, which is the practical minimum for useful excitation.


Instruments ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Johanna Peeples ◽  
Sang-Hyon Chu ◽  
James O’Neil ◽  
Mustafa Janabi ◽  
Bruce Wieland ◽  
...  

Boron nitride nanotubes (BNNTs) were investigated as a target media for cyclotron production of 11C for incident beam energy at or below 11 MeV. Both the 11B(p,n)11C and 14N(p,α)11C nuclear reactions were utilized. A sweep gas of nitrogen or helium was used to collect recoil escape atoms with a desired form of 11CO2. Three prototype targets were tested using an RDS-111 cyclotron. Target geometry and density were shown to impact the saturation yield of 11C and percent of yield recovered as carbon dioxide. Physical damage to the BNNT target media was observed at beam currents above 5 μA. Additional studies are needed to identify operating conditions suitable for commercial application of the method.


Sign in / Sign up

Export Citation Format

Share Document