Actin filaments in two spermatozoa of crustacea decapoda

Author(s):  
E. Dupré ◽  
G. Schatten

Sperm of decapod crustaceans are formed by a round or cup-shaped body, a complex acrosome and one a few appendages emerging from the main body. Although this sperm does not have motility, it has some components of the cytoskeleton like microtubules, which are found inside the appendages. Actin filaments have been found in the spike of penaeidae sperms. The actual participation of the crustacean decapod sperm cytoskeleton during fertilization is not well understood. Actin is supposed to play an active role in drawing the penaeidae shrimp sperm closer to the egg after bending of the spike. The present study was aimed at the localization of actin filaments in sperm of the Robinson Crusoe island lobster, Jasus frontalis and in the crayfish Orconectes propincus, by fluorescent probes and low voltage scanning electron microscopy.

Author(s):  
Arthur V. Jones

In comparison with the developers of other forms of instrumentation, scanning electron microscope manufacturers are among the most conservative of people. New concepts usually must wait many years before being exploited commercially. The field emission gun, developed by Albert Crewe and his coworkers in 1968 is only now becoming widely available in commercial instruments, while the innovative lens designs of Mulvey are still waiting to be commercially exploited. The associated electronics is still in general based on operating procedures which have changed little since the original microscopes of Oatley and his co-workers.The current interest in low-voltage scanning electron microscopy will, if sub-nanometer resolution is to be obtained in a useable instrument, lead to fundamental changes in the design of the electron optics. Perhaps this is an opportune time to consider other fundamental changes in scanning electron microscopy instrumentation.


2002 ◽  
Vol 10 (2) ◽  
pp. 22-23 ◽  
Author(s):  
David C Joy ◽  
Dale E Newbury

Low Voltage Scanning Electron Microscopy (LVSEM), defined as operation in the energy range below 5 keV, has become perhaps the most important single operational mode of the SEM. This is because the LVSEM offers advantages in the imaging of surfaces, in the observation of poorly conducting and insulating materials, and for high spatial resolution X-ray microanalysis. These benefits all occur because a reduction in the energy Eo of the incident beam leads to a rapid fall in the range R of the electrons since R ∼k.E01.66. The reduction in the penetration of the beam has important consequences.


Micron ◽  
1996 ◽  
Vol 27 (3-4) ◽  
pp. 247-263 ◽  
Author(s):  
David C. Joy ◽  
Carolyn S. Joy

2000 ◽  
Vol 6 (4) ◽  
pp. 307-316 ◽  
Author(s):  
E.D. Boyes

AbstractThe current status and general applicability of scanning electron microscopy (SEM) at low voltages is reviewed for both imaging (low voltage scanning electron microscopy, LVSEM) and chemical microanalysis (low voltage energy-dispersive X-ray spectrometry, LVEDX). With improved instrument performance low beam energies continue to have the expected advantages for the secondary electron imaging of low atomic number (Z) and electrically non-conducting samples. They also provide general improvements in the veracity of surface topographic analysis with conducting samples of all Z and at both low and high magnifications. In new experiments the backscattered electron (BSE) signal retains monotonic Z dependence to low voltages (<1 kV). This is contrary to long standing results in the prior literature and opens up fast chemical mapping with low dose and very high (nm-scale) spatial resolution. Similarly, energy-dispersive X-ray chemical microanalysis of bulk samples is extended to submicron, and in some cases to <0.1 μm, spatial resolution in three dimensions at voltages <5 kV. In favorable cases, such as the analysis of carbon overlayers at 1.5 kV, the thickness sensitivity for surface layers is extended to <2 nm, but the integrity of the sample surface is then of concern. At low beam energies (E0) the penetration range into the sample, and hence the X-ray escape path length out of it, is systematically restricted (R = F(E05/3)), with advantages for the accuracy or elimination of complex analysis-by-analysis matrix corrections for absorption (A) and fluorescence (F). The Z terms become more sensitive to E0 but they require only one-time calibrations for each element. The new approach is to make the physics of the beam–specimen interactions the primary factor and to design enabling instrumentation accordingly.


Sign in / Sign up

Export Citation Format

Share Document