Analysis of Gene Expression Directed by a Thymic Locus Control in Transgenic Mice: Mechanisms and Application to Vectors for Gene Therapy

Author(s):  
BJ Aronow ◽  
CA Ley ◽  
KC Ess ◽  
DP Witte

The formation of peripheral T cells from thymocyte progenitors is an intricate developmental process that requires the organized and coordinate expression of multiple genes. Adenosine deaminase (ADA) is an example of a gene that is subject to strong developmental regulation in T-cell precursors and is essential for the subsequent formation of T-cells in humans. We have sought to understand the mechanisms of ADA gene regulation from a basic point of view as well as to employ this to potential vectors for gene therapy.Using transgenic mice have shown that the first intron of the ADA gene contains a powerful locus control region that directs high level gene expression within cortical thymocytes. Based on extensive mutational analysis of the regulatory region and analyses of gene expression that include quantitative gene expression, in situ hybridization, and biochemical characterizations of chromatin structure, we have demonstrated that the intronic locus control region (LCR) consists of a hierarchically structured 2300 base pairs of DNA sequence (Figure 1). The LCR is composed of a series of regulatory elements that include a centrally positioned 300 base pair classical enhancer domain within which there is a critical 30 base pair enhancer core. Within this core, there is a single binding site for the transcription factor c-Myb that is required for activity of the enhancer core, the enhancer, and the intact LCR. Beyond the 300 bp enhancer core on either side the LCR contains novel and puzzling 1 kb non-enhancer sequences that we have termed facilitators. These sequences enable gene copy proportional expression by facilitating the ability of the enhancer to function in chromatin. The effects of the facilitators are evidenced by their ability to allow for insertion-site-independent and gene-copy-proportional expression and they prevent variegated expression among similarly differentiated cell types (Figure 2). Thus, total gene expression does not indicate proper cell type specific expression. The facilitators also allow for the formation of a strong tissue and cell type specific DNAse I hypersensitive site at the enhancer. This suggests that the formation of a discrete organized chromatin structure as a function of developmental differentiation requires extensive DNA sequences, only some of which are of the enhancer type. The capabilities of the facilitators to activate a chromatin domain may also suggest their potential usefulness in vectors for gene therapy of both ADA deficiency and possibly other human genetic diseases. However, the distance and non-enhancer nature of the facilitators suggest that they may act differently than conventional regulatory elements. In support of this, the facilitators obey a strict position and orientation rules with respect to the enhancer.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Seruggia ◽  
Almudena Fernández ◽  
Marta Cantero ◽  
Ana Fernández-Miñán ◽  
José Luis Gomez-Skarmeta ◽  
...  

Abstract Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5′ and 3′ boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.


1995 ◽  
Vol 15 (2) ◽  
pp. 1123-1135 ◽  
Author(s):  
B J Aronow ◽  
C A Ebert ◽  
M T Valerius ◽  
S S Potter ◽  
D A Wiginton ◽  
...  

Using transgenic mice, we have defined novel gene regulatory elements, termed "facilitators." These elements bilaterally flank, by up to 1 kb, a 200-bp T-cell-specific enhancer domain in the human adenosine deaminase (ADA) gene. Facilitators were essential for gene copy-proportional and integration site-independent reporter expression in transgenic thymocytes, but they had no effect on the enhancer in transfected T cells. Both segments were required. Individual segments had no activity. A lack of facilitator function caused positional susceptibility and prevented DNase I-hypersensitive site formation at the enhancer. The segments were required to be at opposed ends of the enhancer, and they could not be grouped together. Reversing the orientation of a facilitator segment caused a partial loss of function, suggesting involvement of a stereospecific chromatin structure. trans-acting factor access to enhancer elements was modeled by exposing nuclei to a restriction endonuclease. The enhancer domain was accessible to the 4-cutter DpnII in a tissue- and cell-type-specific fashion. However, unlike DNase I hypersensitivity and gene expression, accessibility to the endonuclease could occur without the facilitator segments, suggesting that an accessible chromatin domain is an intermediate state in the activational pathway. These results suggest that facilitators (i) are distinct from yet positionally constrained to the enhancer, (ii) participate in a chromatin structure transition that is necessary for the DNase I hypersensitivity and the transcriptional activating function of the enhancer, and (iii) act after cell-type-specific accessibility to the enhancer sequences is established by factors that do not require the facilitators to be present.


2020 ◽  
Author(s):  
Davide Seruggia ◽  
Almudena Fernández ◽  
Marta Cantero ◽  
Ana Fernández-Miñán ◽  
José Luis Gomez-Skarmeta ◽  
...  

ABSTRACTControl of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5’ and 3’ boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2020 ◽  
Author(s):  
Nil Aygün ◽  
Angela L. Elwell ◽  
Dan Liang ◽  
Michael J. Lafferty ◽  
Kerry E. Cheek ◽  
...  

SummaryInterpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing is mainly performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements of cells present during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs and allele specific expression in primary human neural progenitors (n=85) and their sorted neuronal progeny (n=74). Using colocalization and TWAS, we uncover cell-type specific regulatory mechanisms underlying risk for these traits.


Author(s):  
Jieru Li ◽  
Alexandros Pertsinidis

Establishing cell-type-specific gene expression programs relies on the action of distal enhancers, cis-regulatory elements that can activate target genes over large genomic distances — up to Mega-bases away. How distal enhancers physically relay regulatory information to target promoters has remained a mystery. Here, we review the latest developments and insights into promoter–enhancer communication mechanisms revealed by live-cell, real-time single-molecule imaging approaches.


2020 ◽  
Vol 48 (6) ◽  
pp. 2880-2896 ◽  
Author(s):  
Jun Li ◽  
Ting Zhang ◽  
Aarthi Ramakrishnan ◽  
Bernd Fritzsch ◽  
Jinshu Xu ◽  
...  

Abstract The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1’s downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.


2019 ◽  
Author(s):  
Priyanka Nandakumar ◽  
Dongwon Lee ◽  
Thomas J. Hoffmann ◽  
Georg B. Ehret ◽  
Dan Arking ◽  
...  

AbstractHundreds of loci have been associated with blood pressure traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ∼100,000 Genetic Epidemiology Research on Aging (GERA) study participants. In the present study, we subsequently focused on determining putative regulatory regions for these and other tissues of relevance to blood pressure, to both fine-map these loci by pinpointing genes and variants of functional interest within them, and to identify any novel genes.We constructed maps of putative cis-regulatory elements using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Sequence variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. In order to identify genes of interest, we aggregate these variants in these putative cis-regulatory elements within 50Kb of the start or end of genes considered as “expressed” in these tissues or cell types using publicly available gene expression data, and use the deltaSVM scores as weights in the well-known group-wise sequence kernel association test (SKAT). We test for association with both blood pressure traits as well as expression within these tissues or cell types of interest, and identify several genes, including MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B, and PPCDC. Although our study centers on blood pressure traits, we additionally examined two known genes, SCN5A and NOS1AP involved in the cardiac trait QT interval, in the Atherosclerosis Risk in Communities Study (ARIC), as a positive control, and observed an expected heart-specific effect. Thus, our method may be used to identify variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.Author SummarySequence change in genes (“variants”) are linked to the presence and severity of different traits or diseases. However, as genes may be expressed in different tissues and at different times and degrees, using this information is expected to more accurately identify genes of interest. Variants within the genes are essential, but also in the sequences (“regulatory elements”) that control the genes’ expression in different tissues or cell types. In this study, we aim to use this information about expression and variants potentially involved in gene expression regulation to better pinpoint genes and variants in regulatory elements of interest for blood pressure regulation. We do so by taking advantage of such data that are publicly available, and use methods to combine information about variants in aggregate within a gene’s putative regulatory elements in tissues thought to be relevant for blood pressure, and identify several genes, meant to enable experimental follow-up.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5201-5201
Author(s):  
Chieh Lee Wong ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Martyna Adamowicz-Brice ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Background The past decade has witnessed a significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN). A large number of genes have now been implicated in the pathogenesis of MPN but their relative importance, the mechanisms by which they cause different cell types to predominate and their implications for prognosis remain unknown. We hypothesized that there are other genes which may contribute to the pathogenesis of the different disease subtypes detectable only by cell-type specific analysis. Aim The aim of this study was to perform gene expression profiling on different cell types from patients with MPN in order to identify novel variants and driver mutations, to elucidate the pathogenesis and to identify predictors of survival in patients with MPN in a multiracial country. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN from 3 different races (Malay, Chinese and Indian) in Malaysia who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria for MPN. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years and informed consents were obtained. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMNs), mononuclear cells (MNCs) and T cells. RNA was extracted from each cell population. Gene expression profiling was performed using the Illumina HumanHT-12 Expression Beadchip for microarray and the Illumina Nextera XT DNA Sample Preparation Kit for next generation sequencing on the patient and validation cohorts respectively. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. Gene expression levels for each cell type in each disease were compared with NC. In the patient cohort, the number of differentially expressed genes in ET, PV and PMF was 0, 141 and 15 respectively for PMNs (p < 0.05 after multiple testing correction) and 5, 170 and 562 respectively for MNCs (p < 0.05). No differentially expressed genes were identified for T cells in any of the three disease groups. RNA-seq analysis of samples from the validation cohort was used to corroborate these findings. After combination, we were able to confirm differential expression of 0, 14 and 7 genes in ET, PV and PMF respectively for PMNs (p < 0.05) and 51 genes in only PMF for MNCs (p < 0.05). The validated differentially expressed genes for PMNs and MNCs were mutually exclusive except for one gene. The differentially expressed genes in PV and PMF for PMNs were involved in cellular processes and metabolic pathways whereas the differentially expressed genes for PMF in MNCs were involved in regulation of cytoskeleton, focal adhesion and cell signaling pathways. Conclusion This is the first study to use microarray and next generation sequencing techniques to compare cell type-specific expression of genes between different subtypes of MPN. The lack of differential expression in T cells validates the techniques used and indicates that they are not part of the neoplastic clone. Differential expression of genes for MNCs was seen only in PMF which may be related to their more severe phenotype. Interestingly, there were fewer differentially expressed genes in PMF compared to PV for PMNs. The lack of differential expression in ET may either reflect the relatively milder phenotype of the disease or that differential expression is limited to megakaryocytes-platelets which were not studied. The lists of mutually exclusive cell type-specific differentially expressed genes for PMNs and MNCs provide further insight into the pathogenesis of MPN and into the differences between its different forms. The identified genes also indicate further routes for investigation of pathogenesis and possible disease-specific targets for therapy. Disclosures Aitman: Illumina: Honoraria.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7612 ◽  
Author(s):  
Silvia Domcke ◽  
Andrew J. Hill ◽  
Riza M. Daza ◽  
Junyue Cao ◽  
Diana R. O’Day ◽  
...  

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


Sign in / Sign up

Export Citation Format

Share Document