SIMS direct ion imaging in the mineralogical sciences

Author(s):  
G. McMahon ◽  
L. J. Cabri

The use of secondary ion mass spectrometry (SIMS) has enjoyed increasing popularity in the mineralogical sciences owing to its high sensitivity to all elements in the periodic table with detection limits in the parts per million to parts per billion regime, coupled with the ability to display maps of elemental distribution at these detection levels with a spatial resolution of 1 μm. A description of the technique and its application to a wide variety of mineralogical problems has recently been reviewed.The drawback of SIMS is the rather complicated nature of quantification schemes necessitated by sample matrix effects, which refer to differences in the sensitivity for a given element in samples of different composition. These differences result from changes in the ionization efficiency and sputtering yield (sample matrix specific) as well as changes in secondary ion transmission and ion collection efficiencies (instrument specific). Therefore, the use of matrix-matched standards of known concentration is required to establish a calibration factor known as the relative sensitivity factor (RSF) which can be used to convert the experimentally measured secondary ion intensity into concentration values. Furthermore, the effect of changes in ion intensity caused by variations in primary beam current or analysis at different sample positions is removed by normalization to an ion species which represents the matrix material.

1998 ◽  
Vol 510 ◽  
Author(s):  
D.L. Lefforge ◽  
Y.L. Chang ◽  
M. Ludowise ◽  
E.L. Allen

AbstractAluminum gallium nitride (AlGaN) material is used in GaN-based electronic and optoelectonic devices. The Al and Ga ratio can be adjusted to produce material with different compositions and electronic properties. In this set of experiments epitaxial films of (AlxGa1−x)0.5N0.5 with x ranging from 0 to 1 were investigated. Primary composition was determined with Rutherford backscattering spectrometry (RBS). From secondary ion mass spectrometry (SIMS) profiles a correlation of secondary ion counts was made to RBS determinations of primary composition. The SIMS data was also used to determine sputter rate and the relative sensitivity factor (RSF) of O, Mg and Si in (AlxGa1−x)0.5N0.5 material. The correlation of SIMS data with RBS and knowledge of the sputter rate and RSF dependence on composition are essential for the characterization of (AlxGa1−x)0.5N0.5 films


2020 ◽  
Vol 35 (12) ◽  
pp. 2997-3006
Author(s):  
Agnieszka Priebe ◽  
Tianle Xie ◽  
Laszlo Pethö ◽  
Johann Michler

Enhancing the spatial resolution of TOF-SIMS, which provides 3D elemental distribution in combination with high sensitivity and molecular information, is currently one of the hottest topics in the field of chemical analysis at the nanoscale.


1996 ◽  
Vol 11 (8) ◽  
pp. 1923-1933 ◽  
Author(s):  
Robert W. Odom ◽  
Martin L. Grossbeck

This paper describes the application of dynamic secondary ion mass spectrometry (SIMS) to the study of the chemistry of welds in V–Cr–Ti alloys and presents preliminary data on the distribution of minor and trace elements (H, C, N, O, P, S, and C1) in welds produced by gas tungsten arc (GTA) and electron beam techniques. The motivation for this research is to develop techniques that determine correlations between the concentration and distribution of trace elements in alloy metal welds and the physical properties of the weld. To this end, quantitative SIMS techniques were developed for N, O, and S analysis in vanadium alloy welds using an ion implantation/relative sensitivity factor methodology. The data presented in this paper demonstrate that trace compositions and distributions of selected welds correlate, at least qualitatively, with such properties as microhardness and tensile elongation. These data support continuing these investigations to develop microanalysis methods that quantitatively correlate weld composition with mechanical properties.


1997 ◽  
Vol 477 ◽  
Author(s):  
Stephen P. Smith ◽  
Ming Hong Yang ◽  
Victor K. F. Chia

ABSTRACTSurfaceSIMS depth profile measurements of dopants in silicon wafers with thin thermal oxide layers are presented. Complete and accurate calibration of these profiles requires layered data reduction to adjust for residual matrix effects of a factor of two in the sputter rate and SIMS relative sensitivity factor in SiO2 compared with bulk silicon. Properly calibrated profiles show good agreement with expected ion implant profile shapes, and can reveal dopant pile-up at SiO2/Si interfaces (phosphorus, for example). Measured SurfaceSIMS profiles of B doping within the first 10 nm of the substrate Si of experimental large area MOS capacitors show good agreement with dopant profiles independently obtained from experimental C-V data.


Author(s):  
Cole T. Edwards ◽  
Clive M. Jones ◽  
Page C. Quinton ◽  
David A. Fike

The oxygen isotopic compositions (δ18O) of minimally altered phosphate minerals and fossils, such as conodont elements, are used as a proxy for past ocean temperature. Phosphate is thermally stable under low to moderate burial conditions and is ideal for reconstructing seawater temperatures because the P-O bonds are highly resistant to isotopic exchange during diagenesis. Traditional bulk methods used to measure conodont δ18O include multiple conodont elements, which can reflect different environments and potentially yield an aggregate δ18O value derived from a mixture of different water masses. In situ spot analyses of individual elements using micro-analytical techniques, such as secondary ion mass spectrometry (SIMS), can address these issues. Here we present 108 new δ18O values using SIMS from conodont apatite collected from four Lower to Upper Ordovician stratigraphic successions from North America (Nevada, Oklahoma, and the Cincinnati Arch region of Kentucky and Indiana, USA). The available elements measured had a range of thermal alteration regimes that are categorized based on their conodont alteration index (CAI) as either low (CAI = 1−2) or high (CAI = 3−4). Though individual spot analyses of the same element yield δ18O values that vary by several per mil (‰), most form a normal distribution around a mean value. Isotopic variability of individual spots can be minimized by avoiding surficial heterogeneities like cracks, pits, or near the edge of the element and the precision can be improved with multiple (≥4) spot analyses of the same element. Mean δ18O values from multiple conodonts from the same bed range between 0.0 and 4.3‰ (median 1.0‰), regardless of low or high CAI values. Oxygen isotopic values measured using SIMS in this study reproduce values similar to published trends, namely, δ18O values increase during the Early−Middle Ordovician and plateau by the mid Darriwilian (late Middle Ordovician). Twenty-two of the measured conodonts were from ten sampled beds that had been previously measured using bulk analysis. SIMS-based δ18O values from these samples are more positive by an average of 1.7‰ compared to bulk values, consistent with observations by others who attribute the shift to carbonate- and hydroxyl-related SIMS matrix effects. This offset has implications for paleo-temperature model estimates, which indicate that a 4 °C temperature change corresponds to a 1‰ shift in δ18O (‰). Although this uncertainty precludes precise paleo-temperature reconstructions by SIMS, it is valuable for identifying spatial and stratigraphic trends in temperature that might not have been previously possible with bulk approaches.


1983 ◽  
Vol 25 ◽  
Author(s):  
Lawrence E. Lapides ◽  
George L. Whiteman ◽  
Robert G. Wilson

ABSTRACTQuantitative depth profiles of impurities in LPE layers of HgCdTe have been determined using relative sensitivity factors calculated from ion implantation profiles. Standards were provided for Li, Be, B, C, F, Na, Mg, Al, Si, P, S, Cl, Cu, Ga, As, Br, and In. Relative sensitivity factors as a function of ionization potential for O2+ primary ion SIMS and electron affinity for Cs+ primary ion SIMS have been calculated in order to extend quantitation to elements not yet implanted. Examples of depth profiles for implant standards and unimplanted layers are given.


1990 ◽  
Vol 200 ◽  
pp. 47-57 ◽  
Author(s):  
Alexander M. Lawson ◽  
Wengang Chai ◽  
Geoffrey C. Cashmore ◽  
Mark S. Stoll ◽  
Elizabeth F. Hounsell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document