Microstructures and transport properties: A comparison between grain boundaries artificially produced in YBa2Cu3Ov bicrystal thin films and bulk crystals

Author(s):  
X.F. Zhang ◽  
V.R. Todt ◽  
D.J. Miller ◽  
M. St. Louis-Weber ◽  
J. Talvacchio

In order to establish the link between grain boundary (GB) structures and transport properties in superconducting materials, electromagnetic measurements and detailed microstructural studies of carefully prepared GBs are required. Frequently, artificially induced GBs prepared by thin film deposition onto bicrystal substrates are used for such studies. Recently, transmission electron microscopy (TEM) studies have revealed a meandering configuration for GBs in YBa2Cu3Oy (YBCO) thin films grown on [001] tilt SrTiO3 bicrystal substrates (Fig. la). The deviation of the meandering GBs away from the underlying substrate GBs varies from a few tens to hundreds of nanometers. We have demonstrated that the magnitude of the meander in terms of amplitude and wavelength can be reduced by lowering the film deposition rate. The meandering GBs were shown to consist of various straight facets which are a few tens to hundreds of nanometers in length. It is possible that the various segments have very different current transport behavior due to a variable misfit dislocation density. Thus, an unambiguous correlation between the microstructure and global transport properties is difficult to attain.

1996 ◽  
Vol 11 (10) ◽  
pp. 2440-2449 ◽  
Author(s):  
X. F. Zhang ◽  
D. J. Miller ◽  
J. Talvacchio

Changing the film deposition rate is shown to be one way to influence the meandering configurations of grain boundaries (GB's) formed in YBa2Cu3Oy (YBCO) bicrystal thin films. The magnitude and wavelength of the meander in YBCO films deposited at two different rates have been characterized by transmission electron microscopy (TEM) and statistically quantified. It has been found that the meander becomes more uniform and considerably less rough in films deposited at lower rates compared to that observed in films deposited at higher rates. A mechanism for the formation of the meandering GB is proposed based on heterogeneous nucleation and three-dimensional (3D) island growth together with overgrowth of the YBCO films across the substrate grain boundary. The different island sizes and tendency for overgrowth induced by changing the film deposition rate are believed to play important roles in controlling the meandering GB configuration. The possible effects of meandering configurations on transport properties are discussed.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


2019 ◽  
Vol 7 (36) ◽  
pp. 20733-20741 ◽  
Author(s):  
Mehri Ghasemi ◽  
Miaoqiang Lyu ◽  
Md Roknuzzaman ◽  
Jung-Ho Yun ◽  
Mengmeng Hao ◽  
...  

The phenethylammonium cation significantly promotes the formation of fully-covered thin-films of hybrid bismuth organohalides with low surface roughness and excellent stability.


2013 ◽  
Vol 37 (3) ◽  
pp. 873-883 ◽  
Author(s):  
Tsai-Cheng Li ◽  
Rwei-Ching Chang ◽  
Yen-Choung Li

Silver conductive thin films deposited on glass and polyimide substrates by using ink jet printing are studied in this work. Characterization of the printed thin films and comparison with sputtered films are investigated. The micro texture, residual stress, adhesion, hardness, optical reflectance, and electric resistance of the thin films are discussed. The result shows that the ink jet printing has the possibility to replace sputtering in thin film deposition, especially for the polymer substrates.


Author(s):  
Cornel Tarabasanu Mihaila ◽  
Lavinia G. Hinescu ◽  
Cristian Boscornea ◽  
Carmen Moldovan ◽  
Mihai E. Hinescu

The paper presents the synthetic routes for obtaining some organic semiconductors and their characterization in order to use in thin film deposition for gas sensing devices. An original technique was used to control the molecular weight of polymeric phthalocyanine. We have fabricated devices consisting of evaporated thin films of copper, nickel, and iron phthalocyanines onto interdigital electrodes and estimated the electrical conductivity by in-situ measurements. The films were evaporated onto substrates (gold or aluminum) which were entirely integrated in the standard CMOS (capacitor metal oxide semiconductor) technology. The objectives of this work were to improve the synthesis methods of organic metal-complex tetraizoindoles and their polymers and to evaluate their electrical response and thermal stability as evaporated thin films. We have also investigated the variation of polymers conductivity and sublimation yield with the average molecular weight. We found that for polymeric phthalocyanines, the thermal stability was higher than for Pcs monomers. The stability of polymers increased with the average molecular weight.


Author(s):  
Joshua Dillard ◽  
Uzma Amir ◽  
Pawan Tyagi ◽  
Vincent Lamberti

Abstract Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threat to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices.


2013 ◽  
Vol 209 ◽  
pp. 111-115 ◽  
Author(s):  
Sandip V. Bhatt ◽  
M.P. Deshpande ◽  
Bindiya H. Soni ◽  
Nitya Garg ◽  
Sunil H. Chaki

Thin film deposition of PbS is conveniently carried out by chemical reactions of lead acetate with thiourea at room temperature. Energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), selected area electron diffraction patterns (SAED), UV-Vis-NIR spectrophotometer, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Photoluminescence (PL) and Raman spectroscopy techniques are used for characterizing thin films. EDAX spectra shows that no impurity is present and XRD pattern indicates face centered cubic structure of PbS thin films. The average crystallite size obtained using XRD is about 15nm calculated using Scherrer’s formula and that determined from Hall-Williamson plot was found to be 18nm. SAED patterns indicate that the deposited PbS thin films are polycrystalline in nature. Blue shift due to quantum confinement was seen from the UV-Vis-NIR absorption spectra of thin film in comparison with bulk PbS. The Photoluminescence spectra obtained for thin film with different excitation sources shows sharp emission peaks at 395nm and its intensity of photoluminescence increases with increasing the excitation wavelength. Raman spectroscopy of deposited thin film was used to study the optical phonon modes at an excitation wavelength of 488nm using (Ar+) laser beam.


2013 ◽  
Vol 667 ◽  
pp. 549-552
Author(s):  
A.S.M. Rodzi ◽  
Mohamad Hafiz Mamat ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

The properties of zinc oxide thin films were prepared by sol-gel spin-coating method have been presented. This study based on optical and electrical properties of ZnO thin film. The effects of annealing temperatures that exposed with two environments properties have been investigated. Environments exposed in room (27°C) and hot (80°C) temperatures which are stored by various days. Solution preparation, thin film deposition and characterization process were involved in this project. The ZnO films were characterized using UV-Vis-NIR spectrophotometer for optical properties. From that equipment, the percentage of transmittance (%) and absorption coefficient spectra were obtained. With two environments showed have different absorption coefficient are reveal and all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties. From SEM investigations the surface morphology of ZnO thin film shows the particles size become smaller and denser in hot temperatures while in room temperatures have porosity between particles.


2011 ◽  
Vol 63 (6) ◽  
pp. 433-439 ◽  
Author(s):  
Mohammad Asaduzzaman Chowdhury ◽  
Dewan Muhammad Nuruzzaman ◽  
Khaled Khalil ◽  
Mohammad Lutfar Rahaman

Sign in / Sign up

Export Citation Format

Share Document