Herbicide-soil interactions in reduced tillage and plant residue management systems

Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 307-320 ◽  
Author(s):  
Martin A. Locke ◽  
Charles T. Bryson

Recent changes in technology, governmental regulation and scrutiny, and public opinion have motivated the agricultural community to examine current management practices from the perspective of how they fit into a sustainable agricultural framework. One aspect which can be incorporated into many existing farming systems is plant residue management (e.g., reduced tillage, cover crops). Many residue management systems are designed to enhance accumulation of plant residue at the soil surface. The plant residue covering the soil surface provides many benefits, including protection from soil erosion, soil moisture conservation by acting as a barrier against evaporation, improved soil tilth, and inhibition of weed emergence. This review summarizes recent literature (ca. last 25 yr) concerning the effects of plant residue management on the soil environment and how those changes impact herbicide interactions.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 558A-558
Author(s):  
Chad M. Hutchinson ◽  
Milton E. McGiffen

The goals of sustainable agriculture include decreased reliance on synthetic nutrients and pesticides and improved environmental quality for the long-term benefit of the land, livelihood of growers, and their communities. Cropping systems that maximize these goals use alternative fertility and pest control options to produce crops with minimal soil erosion and nutrient leaching. Cropping system elements that can help achieve these goals include: reduced tillage, cover crops, and organic soil amendments. Cover crops are grown before the cash crop and used to replenish the soil with nitrogen and organic matter. Cover crops often also influence pest populations and can be selected based on site-specific growing conditions. Cover crops can be mulched on the soil surface to prevent erosion and weed emergence or can be tilled directly into the soil to incorporate nitrogen and organic matter. Green waste mulch is an increasingly used soil amendment. Many municipalities are encouraging farmers to use green waste mulch in farming systems as an alternative to green waste disposal in landfills. Reduced tillage was once restricted to large-seeded field crops but recent technical advances have made it a feasible option for vegetables and other horticultural crops. Alternative farming practices; however, are still only used by a small minority of growers. Increases in price for organic produce and changes in laws governing farming operations may increase adoption of alternatives to conventional agriculture.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


1996 ◽  
Vol 11 (2-3) ◽  
pp. 52-57 ◽  
Author(s):  
R.I. Papendick

AbstractThe Northwest Wheat Region is a contiguous belt of 3.3 million ha in Idaho, Oregon and Washington. Its climate varies from subhumid (<650 mm annual precipitation) to semiarid (<350 mm), with more than 60% of the annual precipitation occurring during the winter. Winter wheat yields range from a high of 8 t/ha in the wetter zones to a low of 1.5 t/ha in the drier zones. Winter wheat is grown in rotation with spring cereals and pulses where annual precipitation exceeds 450 mm; winter wheat-fallow prevails where annual precipitation is less than 330 mm. Tillage practices are designed to maximize infiltration and retention of water through soil surface and crop residue management. Because of the combination of winter precipitation, steep topography, and winter wheat cropping, much of the region is subject to a severe water erosion hazard, accentuated by freeze-thaw cycles that increase surface runoff and weaken the soil structure. Wind erosion is a major problem in the drier zones, where cover is less and soils are higher in sand. Residue management, primarily through reduced tillage and no-till systems, is the first defense against both wind and water erosion, but yields often are higher with conventional intensive ti llage. Factors that limit yields with conservation farming include weed and disease problems and th e lack of suitable tillage and seeding equipment. Conservation strategies must shift from relying on traditional tillage methods to development of complete no-till systems. Spring cropping as a replacement for winter wheat also needs to be investigated. In some cases, tillage for water conservation must be made compatible with tillage for erosion control.


2017 ◽  
Vol 38 (5) ◽  
pp. 2921 ◽  
Author(s):  
Iara Maria Lopes ◽  
Shirlei Almeida Assunção ◽  
Ana Paula Pessim de Oliveira ◽  
Lúcia Helena Cunha dos Anjos ◽  
Marcos Gervasio Pereira ◽  
...  

The gradual change in management practices in sugarcane (Saccharum spp.) production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM) contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1) soil fertility parameters; (2) on physical carbon fractions; (3) and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT) or minimum tillage (MT)) and subplots (residue burned or unburned at harvesting), with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC) were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 508-516 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly problematic weed in soybean because of the frequent occurrence of glyphosate-resistant (GR) biotypes. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual nonglyphosate herbicides, and preplant herbicide application timing on the population dynamics of GR horseweed and crop yield. A field study was conducted at a site with a moderate infestation of GR horseweed (approximately 1 plant m−2) with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying horseweed plant density, seedbank density, and crop yield. Crop rotation did not influence in-field horseweed or seedbank densities at any data census timing. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season long horseweed densities and protecting crop yield because horseweed in this region behaves primarily as a summer annual weed. Horseweed seedbank densities declined rapidly in the soil by an average of 76% for all systems over the first 10 mo before new seed rain. Despite rapid decline in total seedbank density, seed for GR biotypes remained in the seedbank for at least 2 yr. Therefore, to reduce the presence of GR horseweed biotypes in a local no-till weed flora, integrated weed management (IWM) systems should be developed to reduce total horseweed populations based on the knowledge that seed for GR biotypes are as persistent in the seed bank as glyphosate-sensitive (GS) biotypes.


2021 ◽  
Vol 13 (16) ◽  
pp. 8682
Author(s):  
Caroline Brock ◽  
Douglas Jackson-Smith ◽  
Subbu Kumarappan ◽  
Steve Culman ◽  
Cathy Herms ◽  
...  

Efforts to assess and improve the sustainability performance of the growing organic farming sector depend on an accurate understanding of farm structure and management practices. To contribute to the dearth of literature in this area, we conducted a survey of over 850 certified organic corn growers in four states (Indiana, Michigan, Ohio, and Pennsylvania) in the spring of 2018. Findings show that most organic corn growers in this region had diversified livestock operations (mostly dairy) on relatively small farms (10–100 ha), which contrasts with trends of specialization and growth in farm size. More than half were dairy farmers, and nearly two-thirds farmed with horses (likely Amish). Soil fertility and health were managed by the use of manure, cover crops, forages, and a variety of other soil amendments. Organic corn growers relied heavily on moldboard plow tillage. All producers had positive net returns to labor and management in 2017, though net returns varied widely across operations. The results have implications for assessing the sustainability of organic farming systems, and for designing scientific research and extension/outreach programs to ensure they address the needs of the diverse organic farming population in this region.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Kudzayi Janhi ◽  
Zimkhitha Matshaya ◽  
Cornelius Chiduza ◽  
Lindah Muzangwa

Management practices that promote dual-purpose use of cover crops as forage and soil cover can encourage adoption in mixed smallholder (SH) farming systems. This study investigated the feasibility of dual-purpose use of forage sorghum (Sorghum bicolor x Sorghum bicolor var. sudanense) by testing the effects of clipping frequency and nitrogen (N) topdressing on the root biomass, crude protein (CP), acid detergent (ADF), and neutral detergent fiber (NDF) in the greenhouse and vegetative biomass on the experimental farm station. Four levels of clipping were tested: not clipped (C1), clipped once (C2), twice (C3), and thrice (C4). Nitrogen topdressing had two levels: with (N1) and without (N0) recommended supplementary N. Results show that absence of N topdressing significantly (p < 0.05) increased root biomass in C2, while increasing clipping frequency significantly (p < 0.001) decreased root biomass. During the growing period, N topdressing significantly (p < 0.001) increased CP content in C3 and C4 and NDF (p < 0.01) content in C4. At the termination stage, there was a significant interaction between clipping frequency and N topdressing on the biomass yield obtained in both 2016–2017 (p < 0.05) and 2017–2018 (p < 0.001), respectively. Clipping twice and N topdressing emerged as the best management practice for the dual-purpose of soil cover and livestock feed.


1999 ◽  
Vol 79 (4) ◽  
pp. 647-654 ◽  
Author(s):  
J. Y. Leeson ◽  
J. W. Sheard ◽  
A. G. Thomas

On-farm studies provide a realistic setting to examine the impact of interactions of management practices on weed communities within various farming systems. Clustering farm units into groups that use similar management practices enables the replication of farm management systems within on-farm studies. The goal of this study is to objectively classify farm units into management systems on the basis of quantitative variables describing aspects of cropping history and chemical input levels using multivariate techniques. Twenty-eight Saskatchewan farmers provided details of their management practices from 1990 to 1997 through a series of questionnaires. Twelve variables derived from the questionnaires were used to describe cropping history, pesticide, tillage and fertilizer use on each farm unit. These variables were used to cluster farm units using minimum variance classification and NMS ordination. Both techniques identified seven farm management systems. The greatest differences were observed between organic and non-organic systems. Farm management systems that used annual fallow and continuous annual cropping histories were most similar. The consistent results obtained by use of the two unrelated methodologies indicate the utility of this approach for the classification of farm management systems. Key words: Farm management system, classification, cropping history, chemical input level, on-farm


2021 ◽  
Vol 13 (18) ◽  
pp. 10303
Author(s):  
Alissa White ◽  
Joshua W. Faulkner ◽  
David Conner ◽  
Lindsay Barbieri ◽  
E. Carol Adair ◽  
...  

Farmers and policy makers pursue management practices that enhance water quality, increase landscape flood resiliency, and mitigate agriculture’s contribution to climate change, all while remaining economically viable. This study presents a holistic assessment of how two practices influence the supply of these ecosystem services—the use of an aerator prior to manure application in haylands, and the stacked use of manure injection, cover crops, and reduced tillage in corn silage production. Field data are contextualized by semi-structured interviews that identify influences on adoption. Causal loop diagrams then illustrate feedbacks from ecosystem services onto decision making. In our study, unseen nutrient pathways are the least understood, but potentially the most important in determining the impact of a practice on ecosystem services supply. Subsurface runoff accounted for 64% to 92% of measured hydrologic phosphorus export. Average soil surface greenhouse gas flux constituted 38% to 73% of all contributions to the equivalent CO2 footprint of practices, sometimes outweighing carbon sequestration. Farmers identified interest in better understanding unseen nutrient pathways, expressed intrinsic stewardship motivations, but highlighted financial considerations as dominating decision making. Our analysis elevates the importance of financial supports for conservation, and the need for comprehensive understandings of agroecosystem performance that include hard-to-measure pathways.


2021 ◽  
Vol 12 (4) ◽  
pp. 1037-1055
Author(s):  
Tobias Herzfeld ◽  
Jens Heinke ◽  
Susanne Rolinski ◽  
Christoph Müller

Abstract. Sequestration of soil organic carbon (SOC) on cropland has been proposed as a climate change mitigation strategy to reduce global greenhouse gas (GHG) concentrations in the atmosphere, which in particular is needed to achieve the targets proposed in the Paris Agreement to limit the increase in atmospheric temperature to well below 2 ∘C. We analyze the historical evolution and future development of cropland SOC using the global process-based biophysical model LPJmL, which was recently extended by a detailed representation of tillage practices and residue management (version 5.0-tillage2). We find that model results for historical global estimates for SOC stocks are at the upper end of available literature, with ∼2650 Pg C of SOC stored globally in the year 2018, ∼170 Pg C of which is stored in cropland soils. In future projections, assuming no further changes in current cropland patterns and under four different management assumptions with two different climate forcings, RCP2.6 and RCP8.5, results suggest that agricultural SOC stocks decline in all scenarios, as the decomposition of SOC outweighs the increase in carbon inputs into the soil from altered management practices. Different climate change scenarios, as well as assumptions on tillage management, play a minor role in explaining differences in SOC stocks. The choice of tillage practice explains between 0.2 % and 1.3 % of total cropland SOC stock change in the year 2100. Future dynamics in cropland SOC are most strongly controlled by residue management: whether residues are left on the field or harvested. We find that on current cropland, global cropland SOC stocks decline until the end of the century by only 1.0 % to 1.4 % if residue retention management systems are generally applied and by 26.7 % to 27.3 % in the case of residue harvest. For different climatic regions, increases in cropland SOC can only be found for tropical dry, warm temperate moist, and warm temperate dry regions in management systems that retain residues.


Sign in / Sign up

Export Citation Format

Share Document