scholarly journals An integrated agent-oriented approach to real-time operational design coordination

Author(s):  
GRAHAM COATES ◽  
ALEX H.B. DUFFY ◽  
IAN WHITFIELD ◽  
WILLIAM HILLS

Within the engineering design community there is support for further research into the development of improved approaches to design management. Such research has lead to coordination being identified as an important and pervasive characteristic of many existing approaches (e.g., concurrent engineering and work-flow management). In this article, operational design coordination is proposed as the basis for an improved approach. This article also presents a novel integrated approach that incorporates the key elements of operational design coordination: coherence, communication, task management, resource management, schedule management, and real-time support. Through unifying these key elements, this approach provides an integrated means of managing design in a controlled and harmonious fashion. The approach also provides knowledge of the constituent techniques involved in operational design coordination, the interrelationships and dynamic interactions between them, and the knowledge used and maintained within and between them. The approach has been realized within an agent-oriented system called the Design Coordination System, which provides a systematic means of simultaneously coordinating operational management tasks and technical design tasks. To evaluate the approach, the system has been applied to an industrial case study involving the computational process of turbine blade design. This application has been shown to enable the structured undertaking of interrelated tasks by allocating and using resources of varying performance efficiency in an optimized fashion in accordance with dynamically derived schedules in a coherent, appropriate, and timely manner. This is achieved by managing tasks, their dependencies, and the information required to undertake them. In addition, the approach enables and sustains the continuous optimized use of resources by monitoring, forecasting, and disseminating resource performance efficiency. The approach facilitates dynamic scheduling and the subsequent enactment of the resulting schedules. Decision making for rescheduling is also incorporated within the approach such that it is only performed as and when appropriate. If rescheduling is performed, it is done so in parallel with task enactment such that resources continue to be utilized in an optimized manner.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


2014 ◽  
Vol 59 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Pericles Pilidis

This paper presents a mathematical model for the simulation of rotor blade flexibility in real-time helicopter flight dynamics applications that also employs sufficient modeling fidelity for prediction of structural blade loads. A matrix/vector-based formulation is developed for the treatment of elastic blade kinematics in the time domain. A novel, second-order-accurate, finite-difference scheme is employed for the approximation of the blade motion derivatives. The proposed method is coupled with a finite-state induced-flow model, a dynamic wake distortion model, and an unsteady blade element aerodynamics model. The integrated approach is deployed to investigate trim controls, stability and control derivatives, nonlinear control response characteristics, and structural blade loads for a hingeless rotor helicopter. It is shown that the developed methodology exhibits modeling accuracy comparable to that of non-real-time comprehensive rotorcraft codes. The proposed method is suitable for real-time flight simulation, with sufficient fidelity for simultaneous prediction of oscillatory blade loads.


2021 ◽  
Author(s):  
Joseph Rizzo Cascio ◽  
Antonio Da Silva ◽  
Martino Ghetti ◽  
Martino Corti ◽  
Marco Montini

Abstract Objectives/Scope The benefits of real-time estimation of the cool down time of Subsea Production System (SPS) to prevent formation of hydrates are shown on a real oil and gas facility. The innovative tool developed is based on an integrated approach, which embeds a proxy model of SPS and hydrate curves, exploiting real-time field data from the Eni Digital Oil Field (eDOF, an OSIsoft PI based application developed and managed by Eni) to continuously estimate the cool down time before hydrates are formed during the shutdown. Methods, Procedures, Process The Asset value optimization and the Asset integrity of hydrocarbon production systems are complex and multi-disciplinary tasks in the oil and gas industry, due to the high number of variables and their synergy. An accurate physical model of SPS is built and, then, used to develop a proxy model, which integrates hydrate curves at different MeOH concentration, being able to estimate in real time the cool down time of SPS during the shutdown exploiting data from subsea transmitters made available by eDOF in order to prevent formation of hydrates. The tool is also integrated with a user-friendly interface, making all relevant information readily available to the operators on field. Results, Observations, Conclusions The integrated approach provides a continues estimation of cool down time based on real time field data (eDOF) in order to prevent formation of hydrates and activate preservation actions. An accurate physical model of SPS is built on a real business case using Olga software and cool down curves simulated considering different operating shutdown scenarios. Hydrate curves of the considered production fluid are also simulated at different MeOH concentration using PVTsim NOVA software. Off-line simulated curves are then implemented as numerical tables combined with eDOF data by an Eni developed fast executing proxy model to produce estimated cool down time before hydrates are formed. A graphic representation of SPS behavior and its cool down time estimation during shutdown are displayed and ready to use by the operators on field in support of the operations, saving cost and time. Novel/Additive Information The benefits of real time estimation of the cool down time of SPS to prevent hydrates formation are shown in terms of saving of time and cost during the shutdown operations on a real case application. This integrated approach allows to rely on a continue, automatic and acceptably accurate estimate of the available time before hydrates are formed in SPS, including the possibility to be further developed for cases where subsea transmitters are not available or extended to other flow assurance issues.


Author(s):  
Ramesh Shanmugam ◽  
D. Dinakaran ◽  
D.G. Harris Samuel

Accuracy and safety of tank guns are dependent a great degree on the condition of its gun bore. Many parameters affect accuracy and safety and have strong and complex interdependencies. While it is extremely difficult to monitor all these parameters during battle conditions, it is also essential to enhance the accuracy of the gun by measuring and compensating these parameters. Among all, bore wear and bore centreline are predominant factors. The surface characteristics of the bore also are indicative of potential accidents/deterioration, which should be monitored continuously. Hence, condition monitoring of tank gun bore characteristics in near real-time is an impending need with huge potential for enhancing the combat effectiveness of tank formations. This paper analyses various bore parameters affecting accuracy and safety and proposes a comprehensive condition monitoring method that uses vision camera, thermal camera and mechanical profiler. This integrated approach provides enhanced accuracy in measuring surface characteristics of tank bore that has been partially validated.


Author(s):  
Apurva Shah ◽  
Ketan Kotecha

The Ant Colony Optimization (ACO) algorithms are computational models inspired by the collective foraging behavior of ants. The ACO algorithms provide inherent parallelism, which is very useful in multiprocessor environments. They provide balance between exploration and exploitation along with robustness and simplicity of individual agent. In this paper, ACO based dynamic scheduling algorithm for homogeneous multiprocessor real-time systems is proposed. The results obtained during simulation are measured in terms of Success Ratio (SR) and Effective CPU Utilization (ECU) and compared with the results of Earliest Deadline First (EDF) algorithm in the same environment. It has been observed that the proposed algorithm is very efficient in underloaded conditions and it performs very well during overloaded conditions also. Moreover, the proposed algorithm can schedule some typical instances successfully which are not possible to schedule using EDF algorithm.


Sign in / Sign up

Export Citation Format

Share Document