scholarly journals An outbreak of Shiga toxin-producing Escherichia coli O157:H7 associated with contaminated salad leaves: epidemiological, genomic and food trace back investigations

2017 ◽  
Vol 146 (2) ◽  
pp. 187-196 ◽  
Author(s):  
A. F. W. MIKHAIL ◽  
C. JENKINS ◽  
T. J. DALLMAN ◽  
T. INNS ◽  
A. DOUGLAS ◽  
...  

SUMMARYIn August 2015, Public Health England detected an outbreak of Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 caused by contaminated salad leaves in a mixed leaf prepacked salad product from a national retailer. The implicated leaves were cultivated at five different farms and the zoonotic source of the outbreak strain was not determined. In March 2016, additional isolates from new cases were identified that shared a recent common ancestor with the outbreak strain. A case–case study involving the cases identified in 2016 revealed that ovine exposures were associated with illness (n = 16; AOR 8·24; 95% CI 1·55–39·74). By mapping the recent movement of sheep and lambs across the United Kingdom, epidemiological links were established between the cases reporting ovine exposures. Given the close phylogenetic relationship between the outbreak strain and the isolates from cases with ovine exposures, it is plausible that ovine faeces may have contaminated the salad leaves via untreated irrigation water or run-off from fields nearby. Timely and targeted veterinary and environmental sampling should be considered during foodborne outbreaks of STEC, particularly where ready to eat vegetables and salads are implicated.

2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Vivian C. H. Wu

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) serotype O103 is one of the primary pathogenic contaminants of beef products, contributing to several foodborne outbreaks in recent years. Here, we report the whole-genome sequence of a STEC O103:H2 strain isolated from cattle feces that contains a locus of enterocyte effacement (LEE) pathogenicity island.


2012 ◽  
Vol 56 (6) ◽  
pp. 3277-3282 ◽  
Author(s):  
Martina Bielaszewska ◽  
Evgeny A. Idelevich ◽  
Wenlan Zhang ◽  
Andreas Bauwens ◽  
Frieder Schaumburg ◽  
...  

ABSTRACTThe role of antibiotics in treatment of enterohemorrhagicEscherichia coli(EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction ofstx2-harboring bacteriophages,stx2transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increasedstx2-harboring phage induction and Stx2 production in outbreak isolates (Pvalues of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P> 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulatedstx2transcription, respectively (P< 0.01); the other antibiotics had insignificant effects (P> 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither inducedstx2-harboring phages nor increasedstx2transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS.


2014 ◽  
Vol 82 (12) ◽  
pp. 4968-4977 ◽  
Author(s):  
T. Zangari ◽  
A. R. Melton-Celsa ◽  
A. Panda ◽  
M. A. Smith ◽  
I. Tatarov ◽  
...  

ABSTRACTShiga toxin (Stx)-producingEscherichia coli(STEC) causes hemorrhagic colitis and the hemolytic-uremic syndrome (HUS). STEC strains may produce Stx1a and/or Stx2a or variants of either toxin. A 2006 spinach-associated outbreak of STEC O157:H7 resulted in higher hospitalization and HUS rates than previous STEC outbreaks. The spinach isolate, strain K3995, contains bothstx2aandstx2c. We hypothesized that the enhanced virulence of K3995 reflects the combination ofstx2alleles (carried on lysogenic phages) and/or the amount of Stx2 made by that strain. We compared the virulence of K3995 to those of other O157:H7 isolates and an isogenic Stx2 mutant in rabbits and mice. We also measured the relative levels of Stx2 produced from those strains with or without induction of thestx-carrying phage. Some rabbits infected with K3995 exhibited intestinal pathology and succumbed to infection, while none of those infected with O157:H7 strain 2812 (Stx1a+Stx2a+) died or showed pathological signs. Rabbits infected with the isogenic Stx2a mutant K3995stx2a::catwere not colonized as well as those infected with K3995 and exhibited no signs of disease. In the streptomycin-treated mouse model, more animals infected with K3995 died than did those infected with O157:H7 strain 86-24 (Stx2a+). Additionally, K3995 produced higher levels of total Stx2 and toxin phage DNA in cultures after phage induction than did 86-24. Our results demonstrate the greater virulence of K3995 compared to other O157:H7 strains in rabbits and mice. We conclude that this enhanced virulence is linked to higher levels of Stx2 expression as a consequence of increased phage induction.


2018 ◽  
Vol 23 (24) ◽  
Author(s):  
Frederik T Møller ◽  
Kåre Mølbak ◽  
Steen Ethelberg

Background Investigations of food-borne outbreaks are frequently unsuccessful and new investigation methods should be welcomed. Aim: Describe the use of consumer purchase datasets in outbreak investigations and consider methodological and practical difficulties. Methods: We reviewed published papers describing the use of consumer purchase datasets, where electronic data on the foods that case-patients had purchased before onset of symptoms were obtained and analysed as part of outbreak investigations. Results: For the period 2006–17, scientific articles were found describing 20 outbreak investigations. Most outbreaks involved salmonella or Shiga toxin-producing Escherichia coli and were performed in eight different countries. The consumer purchase datasets were most frequently used to generate hypotheses about the outbreak vehicle where case-interviews had not been fruitful. Secondly, they were used to aid trace-back investigation, where a vehicle was already suspected. A number of methodological as well as (in some countries) legal and practical impediments exist. Conclusions: Several of the outbreaks were unlikely to have been solved without the use of consumer purchase datasets. The method is potentially powerful and with future improved access to big data purchase information, may become a widely applicable tool for outbreak investigations, enabling investigators to quickly find hypotheses and at the same time estimate odds ratios or relative risks hereof. We suggest using the term ‘consumer purchase data’ to refer to the approach in the future.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Claire Jenkins ◽  
Timothy J Dallman ◽  
Kathie A Grant

We aim to provide insight and guidance on the utility of whole genome sequencing (WGS) data for investigating food-borne outbreaks of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in England between 2013 and 2017. Analysis of WGS data delivered an unprecedented level of strain discrimination when compared with multilocus variable number tandem repeat analysis. The robustness of the WGS method ensured confidence in the microbiological identification of linked cases, even when epidemiological links were obscured. There was evidence that phylogeny derived from WGS data can be used to trace the geographical origin of an isolate. Further analysis of the phylogenetic data provided insight on the evolutionary context of emerging pathogenic strains. Publically available WGS data linked to the clinical, epidemiological and environmental context of the sequenced strain has improved trace back investigations during outbreaks. Expanding the use of WGS-based typing analysis globally will ensure the rapid implementation of interventions to protect public health, inform risk assessment and facilitate the management of national and international food-borne outbreaks of STEC O157:H7.


2018 ◽  
Vol 23 (18) ◽  
Author(s):  
Maya Gobin ◽  
Jeremy Hawker ◽  
Paul Cleary ◽  
Thomas Inns ◽  
Daniel Gardiner ◽  
...  

We investigated a large outbreak of Escherichia coli O157 in the United Kingdom (UK) with 165 cases between 31 May and 29 July 2016. No linked cases were reported in other countries. Cases were predominately female (n = 128) and adult (n = 150), 66 attended hospital and nine had features of haemorrhagic uraemic syndrome. A series of epidemiological studies (case–control, case–case, ingredients-based and venue-based studies) and supply chain investigations implicated mixed salad leaves from Supplier A as the likely outbreak vehicle. Whole genome sequencing (WGS) indicated a link with strains from the Mediterranean and informed the outbreak control team to request that Supplier A cease distributing salad leaves imported from Italy. Microbiological tests of samples of salad leaves from Supplier A were negative. We were unable to confirm the source of contamination or the contaminated constituent leaf although our evidence pointed to red batavia received from Italy as the most likely vehicle. Variations in Shiga toxin-producing E. coli surveillance and diagnosis may have prevented detection of cases outside the UK and highlights a need for greater standardisation. WGS was useful in targeting investigations, but greater coverage across Europe is needed to maximise its potential.


2020 ◽  
Vol 8 (5) ◽  
pp. 782 ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Xiaohong Sun ◽  
Vivian C.H. Wu

Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.


Sign in / Sign up

Export Citation Format

Share Document