scholarly journals Is Shiga Toxin-Producing Escherichia coli O45 No Longer a Food Safety Threat? The Danger is Still Out There

2020 ◽  
Vol 8 (5) ◽  
pp. 782 ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Xiaohong Sun ◽  
Vivian C.H. Wu

Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.

2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Vivian C. H. Wu

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) serotype O103 is one of the primary pathogenic contaminants of beef products, contributing to several foodborne outbreaks in recent years. Here, we report the whole-genome sequence of a STEC O103:H2 strain isolated from cattle feces that contains a locus of enterocyte effacement (LEE) pathogenicity island.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


1998 ◽  
Vol 36 (6) ◽  
pp. 1604-1607 ◽  
Author(s):  
L. H. Wieler ◽  
Anja Schwanitz ◽  
Elke Vieler ◽  
Barbara Busse ◽  
H. Steinrück ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) strains of serogroup O118 are the most prevalent group among STEC strains in diarrheic calves in Germany (L. H. Wieler, Ph.D. thesis, University of Giessen, 1997). To define their virulence properties, 42 O118 (O118:H16 [n = 38] and O118:H− [n = 4]) strains were characterized. The strains displayed three different Stx combinations (Stx1 [36 of 42], Stx1 and Stx2 [2 of 42], and Stx2 [4 of 42]). A total of 41 strains (97.6%) harbored a large virulence-associated plasmid containinghly EHEC (hly from enterohemorrhagicE. coli). The strains’ adhesive properties varied in relation to the eukaryotic cells tested. Only 28 of 42 strains (66.7%) showed localized adhesion (LA) in the human HEp-2 cell line. In contrast, in bovine fetal calf lung (FCL) cells, the number of LA-positive strains was much higher (37 of 42 [88.1%]). The locus of enterocyte effacement (LEE) was detected in 41 strains (97.6%). However, not all LEE-positive strains reacted positively in the fluorescence actin-staining (FAS) test, which indicated the attaching and effacing (AE) lesion. In HEp-2 cells, only 22 strains (52.4%) were FAS positive, while in FCL cells, the number of FAS-positive strains was significantly higher (38 of 42 [90.5%; P < 0.001]). In conclusion, the vast majority of the O118 STEC strains from calves (41 of 42 [97.6%]) have a high virulence potential (stx, hly EHEC, and LEE). This virulence potential and the high prevalence of STEC O118 strains in calves suggest that these strains could be a major health threat for humans in the future. In addition, the poor association between results of the geno- and phenotypical tests to screen for the AE ability of STEC strains calls the diagnostic value of the FAS test into question.


2016 ◽  
Vol 65 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Aleksandra Januszkiewicz ◽  
Waldemar Rastawicki

Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic – uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996 – 2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.


2009 ◽  
Vol 76 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Marie Bugarel ◽  
Lothar Beutin ◽  
Patrick Fach

ABSTRACT Rapid and specific detection of Shiga toxin-producing Escherichia coli (STEC) strains with a high level of virulence for humans has become a priority for public health authorities. This study reports on the development of a low-density macroarray for simultaneously testing the genes stx 1, stx 2, eae, and ehxA and six different nle genes issued from genomic islands OI-122 (ent, nleB, and nleE) and OI-71 (nleF, nleH1-2, and nleA). Various strains of E. coli isolated from the environment, food, animals, and healthy children have been compared with clinical isolates of various seropathotypes. The eae gene was detected in all enteropathogenic E. coli (EPEC) strains as well as in enterohemorrhagic E. coli (EHEC) strains, except in EHEC O91:H21 and EHEC O113:H21. The gene ehxA was more prevalent in EHEC (90%) than in STEC (42.66%) strains, in which it was unequally distributed. The nle genes were detected only in some EPEC and EHEC strains but with various distributions, showing that nle genes are strain and/or serotype specific, probably reflecting adaptation of the strains to different hosts or environmental niches. One characteristic nle gene distribution in EHEC O157:[H7], O111:[H8], O26:[H11], O103:H25, O118:[H16], O121:[H19], O5:H−, O55:H7, O123:H11, O172:H25, and O165:H25 was ent/espL2, nleB, nleE, nleF, nleH1-2, nleA. (Brackets indicate genotyping of the flic or rfb genes.) A second nle pattern (ent/espL2, nleB, nleE, nleH1-2) was characteristic of EHEC O103:H2, O145:[H28], O45:H2, and O15:H2. The presence of eae, ent/espL2, nleB, nleE, and nleH1-2 genes is a clear signature of STEC strains with high virulence for humans.


2012 ◽  
Vol 75 (4) ◽  
pp. 748-752 ◽  
Author(s):  
V. DELCENSERIE ◽  
G. LaPOINTE ◽  
T. CHARASLERTRANGSI ◽  
A. RABALSKI ◽  
M. W. GRIFFITHS

Escherichia coli O157:H7 is responsible for a human toxico-infection that can lead to severe complications such as hemolytic uremic syndrome. Inside the intestine, E. coli O157:H7 forms typical attaching-effacing lesions and produces Shiga toxins. The genes that are responsible for these lesions are located in a pathogenicity island called the locus of enterocyte effacement (LEE). LEE gene expression is influenced by quorum sensing through the luxS system. In this study, the effect of glucose on the expression of several genes from LEE, on the expression of Shiga toxin genes, and on the expression of luxS was assessed with real-time, reverse transcription PCR. All concentrations of glucose (from 0.1 to 1%) were able to down-regulate genes from the LEE operon. A slight down-regulation of genes implicated in Shiga toxin expression was also observed but was significant for low doses of glucose (0.1 to 0.5%) only. A slight but significant increase in luxS expression was observed with 1% glucose. This confirms that in addition to quorum sensing, the presence or absence of nutrients such as glucose has an impact on the down- or upregulation of LEE-encoded virulence genes by the bacterium. The influence of glucose on the virulence of E. coli O157:H7 has received little attention, and these results suggest that glucose can have an important effect on the virulence of E. coli O157:H7.


2015 ◽  
Vol 78 (4) ◽  
pp. 675-684 ◽  
Author(s):  
KRISTIN W. LIVEZEY ◽  
BETTINA GROSCHEL ◽  
MICHAEL M. BECKER

Escherichia coli O157:H7 and six serovars (O26, O103, O121, O111, O145, and O45) are frequently implicated in severe clinical illness worldwide. Standard testing methods using stx, eae, and O serogroup–specific gene sequences for detecting the top six non-O157 STEC bear the disadvantage that these genes may reside, independently, in different nonpathogenic organisms, leading to false-positive results. The ecf operon has previously been identified in the large enterohemolysin-encoding plasmid of eae-positive Shiga toxin–producing E. coli (STEC). Here, we explored the utility of the ecf operon as a single marker to detect eae-positive STEC from pure broth and primary meat enrichments. Analysis of 501 E. coli isolates demonstrated a strong correlation (99.6%) between the presence of the ecf1 gene and the combined presence of stx, eae, and ehxA genes. Two large studies were carried out to determine the utility of an ecf1 detection assay to detect non-O157 STEC strains in enriched meat samples in comparison to the results using the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS) method that detects stx and eae genes. In ground beef samples (n = 1,065), the top six non-O157 STEC were detected in 4.0% of samples by an ecf1 detection assay and in 5.0% of samples by the stx- and eae-based method. In contrast, in beef samples composed largely of trim (n = 1,097), the top six non-O157 STEC were detected at 1.1% by both methods. Estimation of false-positive rates among the top six non-O157 STEC revealed a lower rate using the ecf1 detection method (0.5%) than using the eae and stx screening method (1.1%). Additionally, the ecf1 detection assay detected STEC strains associated with severe illness that are not included in the FSIS regulatory definition of adulterant STEC.


2009 ◽  
Vol 54 (No. 1) ◽  
pp. 1-11 ◽  
Author(s):  
C. Herrera-Luna ◽  
D. Klein ◽  
G. Lapan ◽  
S. Revilla-Fernandez ◽  
B. Haschek ◽  
...  

Faecal samples from 230 diarrhoeic and healthy calves aged 0–6 weeks, from 100 farms in Austria, were examined between October 2004 and February 2005 for the presence of bacteria, especially Shiga toxin-producing <I>Escherichia coli </I> (STEC), viruses and parasites. <I>Escherichia coli</I> was detected in 17% of all the faecal samples and was more prevalent in healthy calves. However, <I>E. coli</I> F5 was identified only in one calf without diarrhoea. Overall, 35 out of the 230 (15.2%) samples analyzed carried the Shiga toxin gene: <I>stx1, stx2</I> or both <I>stx1</I> and<I> stx2</I> in their faeces, STEC. Nevertheless, out of 39 pathogenic <I>E. coli</I> positive samples observed, only two carried the Shiga toxin genes: <I>stx1</I>, in a diarrhoeic calf and both <I>stx1</I> and <I>stx2</I> in a healthy calf. <I>eaeA</I> and <I>Ehly</I> genes were detected more frequently in the strains from diarrhoeic calves 57.1% and 50.0%, respectively. <I>Clostridium perfringens</I> was detected in twenty-one samples, the most prevalent toxin type of <I>Clostridium perfringens</I> was found to be type A (76.2%). Other bacteria such as <I>Klebsiella</I> spp. and <I>Proteus</I> spp. were present in 1.3% and 0.4% of all samples. <I>Salmonella</I> spp. was not detected. The detection rates of other enteropathogens were 25.7% bovine coronavirus, 11.7% <I>Cryptosporidium</I> spp., 10.4% <I>Eimeria</I> spp., 9.1% group A rotavirus and <I>Giardia</I> spp. 6.1%. We demonstrated the presence of the STEC virulence genes in healthy and diarrhoeic Austrian calves but the importance of the virulence factors of STEC (<I>stx1, stx2, eae</I> and <I>Ehly</I>) in calf diarrhoea and systemic disease is not well defined. Therefore, further studies are necessary to identify reservoirs or potential sources of virulent STEC strains in order to establish control and prevention strategies for STEC associated diseases in animals and humans.


2007 ◽  
Vol 73 (15) ◽  
pp. 4769-4775 ◽  
Author(s):  
Lothar Beutin ◽  
Angelika Miko ◽  
Gladys Krause ◽  
Karin Pries ◽  
Sabine Haby ◽  
...  

ABSTRACT We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx 1 or variant genes were detected in 88 (40.2%) strains and stx 2 and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx 1, stx 1c, and stx 1d) and the Stx2 (stx 2, stx 2d, stx 2-O118, stx 2e, and stx 2g) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx 2 and/or mucus-activatable stx 2d genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx 2 and stx 2d STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx 2e), lamb, and wildlife meat (stx 1c). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.


Sign in / Sign up

Export Citation Format

Share Document