scholarly journals Global transmission and evolutionary dynamics of the Chikungunya virus

2020 ◽  
Vol 148 ◽  
Author(s):  
F. Deeba ◽  
M. S. H. Haider ◽  
A. Ahmed ◽  
A. Tazeen ◽  
M. I. Faizan ◽  
...  

Abstract Chikungunya virus (CHIKV) is a re-emerging pathogen of global importance. We attempted to gain an insight into the organisation, distribution and mutational load of the virus strains reported from different parts of the world. We describe transmission dynamics and genetic characterisation of CHIKV across the globe during the last 65 years from 1952 to 2017. The evolutionary pattern of CHIKV was analysed using the E1 protein gene through phylogenetic, Bayesian and Network methods with a dataset of 265 sequences from various countries. The time to most recent common ancestor of the virus was estimated to be 491 years ago with an evolutionary rate of 2.78 × 10−4 substitutions/site/year. Genetic characterisation of CHIKV strains was carried out in terms of variable sites, selection pressure and epitope mapping. The neutral selection pressure on the E1 gene of the virus suggested a stochastic process of evolution. We identified six potential epitope peptides in the E1 protein showing substantial interaction with human MHC-I and MHC-II alleles. The present study augments global epidemiological and population dynamics of CHIKV warranting undertaking of appropriate control measures. The identification of epitopic peptides can be useful in the development of epitope-based vaccine strategies against this re-emerging viral pathogen.

2021 ◽  
Vol 9 (6) ◽  
pp. 1141
Author(s):  
Dániel Cadar ◽  
Jonas Schmidt-Chanasit ◽  
Dennis Tappe

Mammalian 2 orthobornavirus (VSBV-1) is an emerging zoonotic pathogen discovered in several exotic squirrel species and associated with fatal human encephalitis. The dynamics of VSBV-1 spread and evolution in its presumed natural hosts are unknown. Here, we present the phylogeny, micro-evolution, cross-species transmission and spread of VSBV-1 at a temporal and spatial resolution within the limits of animal husbandry. The results showed that VSBV-1 can be classified into six distinct groups and that the most recent common ancestor of the known German strains emerged at least 20 years ago. We here demonstrate that the genetic diversity of the VSBV-1 groups is shaped primarily by in situ evolution and most of the amino acid changes are deleterious polymorphisms removed by purifying selection. Evidence of adaptive evolution has been found in the G and L genes which might have an influence on transmission fitness. Furthermore, there was also evidence for some form of adaptive changes in the glycoprotein which suggests that many sites might be subjected to positive pressure evolving under episodic directional selection, indicating past occurrence of positive selection. Host switching events were detected as dominant evolutionary mechanisms driving the virus-host associations. Virus spread by animal trade followed by subsequent local micro-evolution in zoos and holdings is responsible for diversifying strains. Time-resolved phylogeny indicated that Prevost’s squirrels might be the original squirrel species carrying and seeding the virus in Germany. This study provides the first insight into the ecology and micro-evolutionary dynamics of this novel viral pathogen in the captive exotic squirrel population under artificial ecological conditions (zoos and animal husbandry) and co-housing of different squirrel species.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Xavier Didelot ◽  
Janina Dordel ◽  
Lilith K. Whittles ◽  
Caitlin Collins ◽  
Nicole Bilek ◽  
...  

ABSTRACT Gonorrhea is a sexually transmitted disease causing growing concern, with a substantial increase in reported incidence over the past few years in the United Kingdom and rising levels of resistance to a wide range of antibiotics. Understanding its epidemiology is therefore of major biomedical importance, not only on a population scale but also at the level of direct transmission. However, the molecular typing techniques traditionally used for gonorrhea infections do not provide sufficient resolution to investigate such fine-scale patterns. Here we sequenced the genomes of 237 isolates from two local collections of isolates from Sheffield and London, each of which was resolved into a single type using traditional methods. The two data sets were selected to have different epidemiological properties: the Sheffield data were collected over 6 years from a predominantly heterosexual population, whereas the London data were gathered within half a year and strongly associated with men who have sex with men. Based on contact tracing information between individuals in Sheffield, we found that transmission is associated with a median time to most recent common ancestor of 3.4 months, with an upper bound of 8 months, which we used as a criterion to identify likely transmission links in both data sets. In London, we found that transmission happened predominantly between individuals of similar age, sexual orientation, and location and also with the same HIV serostatus, which may reflect serosorting and associated risk behaviors. Comparison of the two data sets suggests that the London epidemic involved about ten times more cases than the Sheffield outbreak. IMPORTANCE The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Successful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individuals. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of several transmission routes and risk factors, which can be used to design better control measures.


2010 ◽  
Vol 365 (1548) ◽  
pp. 1871-1878 ◽  
Author(s):  
Giusi Amore ◽  
Luigi Bertolotti ◽  
Gabriel L. Hamer ◽  
Uriel D. Kitron ◽  
Edward D. Walker ◽  
...  

West Nile virus has evolved in concert with its expansion across North America, but little is known about the evolutionary dynamics of the virus on local scales. We analysed viral nucleotide sequences from mosquitoes collected in 2005, 2006, and 2007 from a known transmission ‘hot spot’ in suburban Chicago, USA. Within this approximately 11 × 14 km area, the viral envelope gene has increased approximately 0.1% yr −1 in nucleotide-level genetic diversity. In each year, viral diversity was higher in ‘residential’ sites characterized by dense housing than in more open ‘urban green space’ sites such as cemeteries and parks. Phylodynamic analyses showed an increase in incidence around 2005, consistent with a higher-than-average peak in mosquito and human infection rates that year. Analyses of times to most recent common ancestor suggest that WNV in 2005 and 2006 may have arisen predominantly from viruses present during 2004 and 2005, respectively, but that WNV in 2007 had an older common ancestor, perhaps indicating a predominantly mixed or exogenous origin. These results show that the population of WNV in suburban Chicago is an admixture of viruses that are both locally derived and introduced from elsewhere, containing evolutionary information aggregated across a breadth of spatial and temporal scales.


2008 ◽  
Vol 89 (12) ◽  
pp. 2933-2942 ◽  
Author(s):  
Miranda de Graaf ◽  
Albert D. M. E. Osterhaus ◽  
Ron A. M. Fouchier ◽  
Edward C. Holmes

Human (HMPV) and avian (AMPV) metapneumoviruses are closely related viruses that cause respiratory tract illnesses in humans and birds, respectively. Although HMPV was first discovered in 2001, retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV was first isolated in the 1970s, and can be classified into four subgroups, A–D. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has emerged from AMPV-C upon zoonosis. Presently, at least four genetic lineages of HMPV circulate in human populations – A1, A2, B1 and B2 – of which lineages A and B are antigenically distinct. We used a Bayesian Markov Chain Monte Carlo (MCMC) framework to determine the evolutionary and epidemiological dynamics of HMPV and AMPV-C. The rates of nucleotide substitution, relative genetic diversity and time to the most recent common ancestor (TMRCA) were estimated using large sets of sequences of the nucleoprotein, the fusion protein and attachment protein genes. The sampled genetic diversity of HMPV was found to have arisen within the past 119–133 years, with consistent results across all three genes, while the TMRCA for HMPV and AMPV-C was estimated to have existed around 200 years ago. The relative genetic diversity observed in the four HMPV lineages was low, most likely reflecting continual population bottlenecks, with only limited evidence for positive selection.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingjian Zhu ◽  
Jian Shen ◽  
Qianli Zeng ◽  
Joanna Weihui Tan ◽  
Jirapat Kleepbua ◽  
...  

Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region.Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model.Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10−3 (1.292 × 10−3 to 1.613 × 10−3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia.Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4333 ◽  
Author(s):  
Shaowei Sang ◽  
Xiaoyun Yang

Background During the winter of 2014–2015, a rarely reported norovirus (NoV) genotype GII.17 was found to have increased its frequency in norovirus outbreaks in East Asia, surpassing the GII.4 NoV infections. GII.17 genotype has been detected for over three decades in the world. The aim of this study is to examine the evolutionary dynamics of GII.17 over the last four decades. Methods NoV GII.17 sequences with complete or nearly complete VP1 were downloaded from GenBank and the phylogenetic analyses were then conducted. Results The maximum likelihood analysis showed that GII.17 genotype could be divided into four different clades (Clades A–D). The strains detected after 2012, which could be the cause of the outbreaks, were separated into Clades C–D with their mean amino acid distance being 4.5%. Bayesian Markov chain Monte Carlo analyses indicated that the rate of nucleotide substitution per sites was 1.68 × 10−3 nucleotide substitutions/site/year and the time of the most recent common ancestor was 1840. The P2 subdomain of GII.17 was highly variable with 44% (56/128) amino acids variations including two insertions at positions 295–296 and one deletion at position 385 (Clades C and D) and one insertion at position 375 (Clade D). Variations existed in Epitopes A, B and D corresponding to GII.4 and human histo-blood group antigens binding site I in P2 subdomain. Conclusion The novel GII.17 strains that caused outbreaks in 2013–2015 may have two new variants. The evolvement of HBGAs binding site and epitopes in P2 subdomain might contribute to the novel GII.17 strains predominance in some regions.


2019 ◽  
Author(s):  
Kyungyong Seong ◽  
Eunyoung Seo ◽  
Meng Li ◽  
Brian Staskawicz

AbstractBackgroundNucleotide-binding and leucine-rich repeat immune receptors (NLRs) are an important component of plant immunity that provides resistance against diverse pathogens. NLRs often exist as large gene families, the members of which display diverse multi-domain architectures (MDAs) and evolve through various mechanisms of duplications and selections.ResultsWe conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real time (SMRT) sequencing of PacBio for 18 accessions in Solanaceae including 15 wild tomatoes. We demonstrate what was previously known as Solanaceae Domain (SD) not only is more diverse in structure and function but also far anciently originated from the most recent common ancestor (MRCA) between Asterids and Amaranthaceae. In tomato, NLRs with the extended N-terminus displayed distinct patterns of evolution based on phylogenetic clades by proliferation, continuous elongation and domain losses.ConclusionsOur study provides high quality gene models of NLRs that can serve as resources for future studies for crop engineering and elucidates greater evolutionary dynamics of the extended NLRs than previously assumed.


Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Steven Jorgensen ◽  
Charles Ofria

Fine-scale evolutionary dynamics can be challenging to tease out when focused on broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic metrics that operate on lineages and phylogenies in digital evolution experiments with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: depth of the most-recent common ancestor, phylogenetic richness, phylogenetic divergence, and phylogenetic regularity. We demonstrate the use of each metric on a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, confirming our intuitions about what they can tell us about evolutionary dynamics.


Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Steven Jorgensen ◽  
Charles Ofria

Fine-scale evolutionary dynamics can be challenging to tease out when focused on broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic metrics that operate on lineages and phylogenies in digital evolution experiments with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: depth of the most-recent common ancestor, phylogenetic richness, phylogenetic divergence, and phylogenetic regularity. We demonstrate the use of each metric on a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, confirming our intuitions about what they can tell us about evolutionary dynamics.


Author(s):  
Rajesh Raghunanth Pharande ◽  
Sharmila Badal Majee ◽  
Satish S. Gaikwad ◽  
S. D. Moregoankar ◽  
AnilKumar Bannalikar ◽  
...  

Nearly 1.7 million cases of dog bites are reported every year in India and many cases of animal rabies are left unattended and undiagnosed. Therefore, a mere diagnosis of rabies is not sufficient to understand the epidemiology and the spread of the rabies virus (RV) in animals. There is a paucity of information about the evolutionary dynamics of RV in dogs and its biodiversity patterns in India. In total, 50 dog-brain samples suspected of rabies were screened by the nucleoprotein- (N) and glycoprotein- (G) gene PCR. The N and G genes were subsequently sequenced to understand the molecular evolution in these genes. The phylogenetic analysis of the N gene revealed that six isolates in the Mumbai region belonged to a single Arctic lineage. Time-scaled phylogeny by Bayesian coalescent analysis of the partial N gene revealed that the time to the most recent common ancestor (TMRCA) for the sequences belonged to the cluster from 2006.68 with a highest posterior density of 95 % betweeen 2005–2008, which is assigned to Indian lineage I. Migration pattern revealed a strong Bayes factor between Mumbai to Delhi, Panji to Hyderabad, Delhi to Chennai, and Chennai to Chandigarh. Phylogenetic analysis of the G gene revealed that the RVs circulating in the Mumbai region are divided into three lineages. Time-scaled phylogeny by the Bayesian coalescent analysis method estimated that the TMRCA for sequences under study was from 1993 and Indian clusters was from 1962. In conclusion, the phylogenetic analysis of the N gene revealed that six isolates belonged to single Arctic lineages along with other Indian isolates and they were clustered into a single lineage but divided into three clades based on the G-gene sequences. The present study highlights and enhances the current molecular epidemiology and evolution of RV and revealed strong location bias and geographical clustering within Indian isolates on the basis of N and G genes.


Sign in / Sign up

Export Citation Format

Share Document