scholarly journals Evolutionary dynamics of human and avian metapneumoviruses

2008 ◽  
Vol 89 (12) ◽  
pp. 2933-2942 ◽  
Author(s):  
Miranda de Graaf ◽  
Albert D. M. E. Osterhaus ◽  
Ron A. M. Fouchier ◽  
Edward C. Holmes

Human (HMPV) and avian (AMPV) metapneumoviruses are closely related viruses that cause respiratory tract illnesses in humans and birds, respectively. Although HMPV was first discovered in 2001, retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV was first isolated in the 1970s, and can be classified into four subgroups, A–D. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has emerged from AMPV-C upon zoonosis. Presently, at least four genetic lineages of HMPV circulate in human populations – A1, A2, B1 and B2 – of which lineages A and B are antigenically distinct. We used a Bayesian Markov Chain Monte Carlo (MCMC) framework to determine the evolutionary and epidemiological dynamics of HMPV and AMPV-C. The rates of nucleotide substitution, relative genetic diversity and time to the most recent common ancestor (TMRCA) were estimated using large sets of sequences of the nucleoprotein, the fusion protein and attachment protein genes. The sampled genetic diversity of HMPV was found to have arisen within the past 119–133 years, with consistent results across all three genes, while the TMRCA for HMPV and AMPV-C was estimated to have existed around 200 years ago. The relative genetic diversity observed in the four HMPV lineages was low, most likely reflecting continual population bottlenecks, with only limited evidence for positive selection.

2020 ◽  
Vol 148 ◽  
Author(s):  
F. Deeba ◽  
M. S. H. Haider ◽  
A. Ahmed ◽  
A. Tazeen ◽  
M. I. Faizan ◽  
...  

Abstract Chikungunya virus (CHIKV) is a re-emerging pathogen of global importance. We attempted to gain an insight into the organisation, distribution and mutational load of the virus strains reported from different parts of the world. We describe transmission dynamics and genetic characterisation of CHIKV across the globe during the last 65 years from 1952 to 2017. The evolutionary pattern of CHIKV was analysed using the E1 protein gene through phylogenetic, Bayesian and Network methods with a dataset of 265 sequences from various countries. The time to most recent common ancestor of the virus was estimated to be 491 years ago with an evolutionary rate of 2.78 × 10−4 substitutions/site/year. Genetic characterisation of CHIKV strains was carried out in terms of variable sites, selection pressure and epitope mapping. The neutral selection pressure on the E1 gene of the virus suggested a stochastic process of evolution. We identified six potential epitope peptides in the E1 protein showing substantial interaction with human MHC-I and MHC-II alleles. The present study augments global epidemiological and population dynamics of CHIKV warranting undertaking of appropriate control measures. The identification of epitopic peptides can be useful in the development of epitope-based vaccine strategies against this re-emerging viral pathogen.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 786 ◽  
Author(s):  
Ye Chen ◽  
Quanming Xu ◽  
Hong Chen ◽  
Xian Luo ◽  
Qi Wu ◽  
...  

The identification of a new circovirus (Porcine Circovirus 3, PCV3) has raised concern because its impact on swine health is not fully known. In Fujian Province in eastern China, even its circulating status and genetic characteristics are unclear. Here, we tested 127 tissue samples from swine from Fujian Province that presented respiratory symptoms. All of the PCV3 positive samples were negative for many other pathogens involved in respiratory diseases like PCV2, PRRSV, and CSFV, suggesting that PCV3 is potentially pathogenic. From phylogenetic analysis, PCV3 strains are divided into two main clades and five sub-clades; PCV3a-1, PCV3a-2, PCV3a-3, PCV3b-1, and PCV3b-2. Our identified strains belong to genotypes PCV3a-1, PCV3a-2, PCV3a-3, and PCV3b-2, indicating a high degree of genetic diversity of PCV3 in Fujian province until 2019. Interestingly, we found the time of the most recent common ancestor (tMRCA) of PCV3 was dated to the 1950s, and PCV3 has a similar evolutionary rate as PCV2 (the main epidemic genotypes PCV2b and PCV2d). In addition, positive selection sites N56D/S and S77T/N on the capsid gene are located on the PCV3 antigen epitope, indicating that PCV3 is gradually adaptive in swine. In summary, our results provide important insights into the epidemiology of PCV3.


2016 ◽  
Vol 283 (1836) ◽  
pp. 20160990 ◽  
Author(s):  
Mark Achtman

Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori , which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis , the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis . Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases.


2010 ◽  
Vol 365 (1548) ◽  
pp. 1871-1878 ◽  
Author(s):  
Giusi Amore ◽  
Luigi Bertolotti ◽  
Gabriel L. Hamer ◽  
Uriel D. Kitron ◽  
Edward D. Walker ◽  
...  

West Nile virus has evolved in concert with its expansion across North America, but little is known about the evolutionary dynamics of the virus on local scales. We analysed viral nucleotide sequences from mosquitoes collected in 2005, 2006, and 2007 from a known transmission ‘hot spot’ in suburban Chicago, USA. Within this approximately 11 × 14 km area, the viral envelope gene has increased approximately 0.1% yr −1 in nucleotide-level genetic diversity. In each year, viral diversity was higher in ‘residential’ sites characterized by dense housing than in more open ‘urban green space’ sites such as cemeteries and parks. Phylodynamic analyses showed an increase in incidence around 2005, consistent with a higher-than-average peak in mosquito and human infection rates that year. Analyses of times to most recent common ancestor suggest that WNV in 2005 and 2006 may have arisen predominantly from viruses present during 2004 and 2005, respectively, but that WNV in 2007 had an older common ancestor, perhaps indicating a predominantly mixed or exogenous origin. These results show that the population of WNV in suburban Chicago is an admixture of viruses that are both locally derived and introduced from elsewhere, containing evolutionary information aggregated across a breadth of spatial and temporal scales.


2015 ◽  
Vol 112 (44) ◽  
pp. 13609-13614 ◽  
Author(s):  
Robyn S. Lee ◽  
Nicolas Radomski ◽  
Jean-Francois Proulx ◽  
Ines Levade ◽  
B. Jesse Shapiro ◽  
...  

Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than the Canadian average. Molecular studies in this region have documented limited bacterial genetic diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor (MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer SNPs than pairs from different villages (median: 6 vs. 47, P < 0.00005), indicating that most transmission occurs within villages. There was an excess of nonsynonymous SNPs after the diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). Nonsynonymous SNPs were detected across all gene categories, arguing against positive selection and toward genetic drift with relaxation of purifying selection. Supporting the latter possibility, 28 genes were partially or completely deleted since the MRCA, including genes previously reported to be essential for M. tuberculosis growth. Our findings indicate that the epidemiologic success of M. tuberculosis in this region is more likely due to an environment conducive to TB transmission than a particularly well-adapted strain.


2019 ◽  
Author(s):  
Zhizhou Tan ◽  
Gabriel Gonzalez ◽  
Jinliang Sheng ◽  
Jianmin Wu ◽  
Fuqiang Zhang ◽  
...  

AbstractPolyomaviruses (PyVs) are small, double-stranded DNA tumor viruses carried by diverse vertebrates. PyVs have previously been considered highly host restricted in mammalian hosts, with host-switching events thought rare or nonexistent. Prior investigations have revealed short-range host-switching events of PyVs in two different African bat species within the horseshoe bat genusRhinolophus. Herein, we have conducted a systematic investigation of PyVs in 1,083 archived bat samples collected from five provinces across China, and identified 192 PyVs from 186 bats from 15 host species within 6 families (Rhinolophidae, Vespertilionidae, Hipposideridae, Emballonuridae, Miniopteridae and Pteropodidae) representing 28 newly-described PyVs, indicative of extensive genetic diversity of bat PyVs. Surprisingly, two PyVs were identified in multiple bat species from different families, and another PyV clustered phylogenetically with PyVs carried by bats from a different host family, indicative of three inter-family PyV host-switching events. The time to most recent common ancestor (tMRCA) of the three events was estimated at 0.02-11.6 million years ago (MYA), which is inconsistent with the estimated tMRCA of their respective bat hosts (36.3-66.7 MYA), and is most parsimoniously explained by host-switching events. PyVs identified from geographically separated Chinese horseshoe bat species in the present study showed close genetic identities, and clustered with each other and with PyVs from African horseshoe bats, allowing assessment of the effects of positive selection in VP1 within the horseshoe bat family Rhinolophidae. Correlation analysis indicated that co-evolution with their hosts contributed much more to evolutionary divergence of PyV than geographic distance. In conclusion, our findings provide the first evidence of inter-family host-switching events of PyV in mammals and challenge the prevailing evolutionary paradigm for strict host restriction of mammalian PyVs.Author summarySince the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered both genetically stable and highly host-restricted in their mammalian hosts. In this study, we have identified multiple cases of host-switching events of PyVs by large scale surveillance in diverse bat species collected in China. These host-switching events occurred between bat families living in the same colony, indicating that a large population with frequent contacts between different bat species may represent an ecological niche facilitating PyV host-switching. The cases studied involved members of bats from several families, including horseshoe bats, which were previously found to harbor a number of highly virulent viruses to both humans and domestic animals. Our findings have provided evidence that even highly host-specific DNA viruses can transmit between bats of different species and indicate an increased propensity for spillover events involving horseshoe bats. We propose an evolutionary scheme for bat-borne PyVs in which intra-host divergence and host-switching has generated the diverse PyVs in present day bats. This scheme provides a useful model to study the evolution of PyVs in other hosts and, potentially, the modeling of bat zoonoses and the transmission of other DNA viruses in other mammals, including humans.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingjian Zhu ◽  
Jian Shen ◽  
Qianli Zeng ◽  
Joanna Weihui Tan ◽  
Jirapat Kleepbua ◽  
...  

Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region.Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model.Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10−3 (1.292 × 10−3 to 1.613 × 10−3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia.Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.


2019 ◽  
Author(s):  
Tanita Wein ◽  
Tal Dagan

AbstractPopulation bottlenecks leading to a drastic reduction of the population size are common in the evolutionary dynamics of natural populations; their occurrence is known to have implications for genome evolution due to genetic drift, the consequent reduction in genetic diversity and the rate of adaptation. Nevertheless, an empirical characterization of the effect of population bottleneck size on evolutionary dynamics of bacteria is currently lacking. Here we show that selective conditions have a stronger effect on the evolutionary history of bacteria in comparison to genetic drift following population bottlenecks. We evolved Escherichia coli populations under three different population bottlenecks (small, medium, large) in two temperature regimes (37°C and 20°C). We find a high genetic diversity in the large in comparison to the small bottleneck size. Nonetheless, the cold temperature led to reduced genetic diversity in all bottleneck sizes, hence, the temperature has a stronger effect on the genetic diversity in comparison to the bottleneck size. A comparison of the fitness gain among the evolved populations reveals a similar pattern where the temperature has a significant effect on the fitness. Our study demonstrates that population bottlenecks are an important determinant of the evolvability in bacteria; their consequences depend on the selective conditions and are best understood via their effect on the standing genetic variation.


2016 ◽  
Author(s):  
Kimberly F. McManus ◽  
Angela Taravella ◽  
Brenna Henn ◽  
Carlos D. Bustamante ◽  
Martin Sikora ◽  
...  

AbstractThe human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of its strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of a locus under positive selection in humans.Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human and great ape genomes, to analyze the fine scale population structure of DARC. We estimate the time to most recent common ancestor (TMRCA) of the FY*O mutation to be 42 kya (95% CI: 34–49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011–0.18), which is among the strongest estimated in the genome. We estimate the TMRCA of the FY*A mutation to be 57 kya (95% CI: 48–65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.Author SummaryInfectious diseases have undoubtedly played an important role in ancient and modern human history. Yet, there are relatively few regions of the genome involved in resistance to pathogens that have shown a strong selection signal. We revisit the evolutionary history of a gene associated with resistance to the most common malaria-causing parasite, Plasmodium vivax, and show that it is one of regions of the human genome that has been under strongest selective pressure in our evolutionary history (selection coefficient: 5%). Our results are consistent with a complex evolutionary history of the locus involving selection on a mutation that was at a very low frequency in the ancestral African population (standing variation) and a large differentiation between European, Asian and African populations.


2020 ◽  
Author(s):  
Babatunde Olarenwaju Motayo ◽  
Olukunle Oluwapamilerin Oluwasemowo ◽  
Paul Akiniyi Akinduti ◽  
Babatunde Adebiyi Olusola ◽  
Olumide T Aerege ◽  
...  

ABSTRACTThe ongoing SARSCoV-2 pandemic was introduced into Africa on 14th February 2020 and has rapidly spread across the continent causing severe public health crisis and mortality. We investigated the genetic diversity and evolution of this virus during the early outbreak months using whole genome sequences. We performed; recombination analysis against closely related CoV, Bayesian time scaled phylogeny and investigated spike protein amino acid mutations. Results from our analysis showed recombination signals between the AfrSARSCoV-2 sequences and reference sequences within the N and S genes. The evolutionary rate of the AfrSARSCoV-2 was 4.133 × 10−4 high posterior density HPD (4.132 × 10−4 to 4.134 × 10−4) substitutions/site/year. The time to most recent common ancestor TMRCA of the African strains was December 7th 2019. The AfrSARCoV-2 sequences diversified into two lineages A and B with B being more diverse with multiple sub-lineages confirmed by both maximum clade credibility MCC tree and PANGOLIN software. There was a high prevalence of the D614-G spike protein amino acid mutation (82.61%) among the African strains. Our study has revealed a rapidly diversifying viral population with the G614 spike protein variant dominating, we advocate for up scaling NGS sequencing platforms across Africa to enhance surveillance and aid control effort of SARSCoV-2 in Africa.


Sign in / Sign up

Export Citation Format

Share Document