scholarly journals Molecular typing of Salmonella serotype Thompson strains isolated from human and animal sources

1999 ◽  
Vol 122 (1) ◽  
pp. 33-39 ◽  
Author(s):  
S. A. CHISHOLM ◽  
P. B. CRICHTON ◽  
H. I. KNIGHT ◽  
D. C. OLD

One-hundred-and-thirteen isolates of Salmonella serotype Thompson from diverse sources in seven countries were characterized by PvuII ribotyping and IS200 fingerprinting. Ten PvuII ribotypes were observed. The predominant PvuII ribotype 1 represented a major clone of world-wide distribution but was not found in Australia; PvuII ribotypes 2 and 3 represented minor clones. HincII ribotyping discriminated subtypes within PvuII ribotype 1: HincII ribotype 1 was distributed widely but HincII ribotype 2 was found mainly in Scottish isolates. None of 101 isolates of PvuII ribotypes 1–3 contained copies of IS200. All 12 isolates of PvuII ribotypes 4–10 were from Australia and 7 of them contained copies of IS200 of 5 different profiles. These results suggest the existence of at least two lineages of Salmonella Thompson with a different geographical distribution. The finding that most isolates from man and poultry in Scotland belonged to the same ribotype (PvuII 1/HincII 2) and were IS200-negative suggests that poultry is an important source of human infection in Scotland.

Author(s):  
P. M. Stockdale

Abstract A description is provided for Nannizzia incurvata. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Recorded only from man and dog (but see NOTES). Guinea-pigs have been experimentally infected. DISEASE: Ringworm (dermatophytosis, tinea). Nannizzia incurvata is present in soil and apparently only rarely a cause of disease. In man the scalp (tinea capitis) and glabrous skin (tinea corporis) may be infected. Skin lesions are inflammatory but details of known scalp infections are not available. In experimental inoculations of guineapigs (Rdzanek, pers. comm.) N. incurvata was intermediate between N. gypsea and N. fulva in virulence, the reaction varying from negative to strongly inflammatory. Ectothrix hyphae breaking up into large arthrospores were seen on some hairs, and infected hairs did not fluoresce under Wood's light. GEOGRAPHICAL DISTRIBUTION: Asia (India), Europe (Czechoslovakia, Great Britain and Ireland, Germany, Netherlands, Poland); U.S.A. (Tenn.); N. incurvata is probably of world-wide distribution in the soil.


1951 ◽  
Vol 29 (1) ◽  
pp. 1-16 ◽  
Author(s):  
L. P. E. Choquette

The systematic position of the genus Rhabdochona Railliet, 1916 and its diagnosis is reviewed. The genus comprising 33 species has a world-wide distribution and has been found, with one exception, in fish. Species from fish in North America are discussed and R. cascadilla Wigdor, 1918 is redescribed; R. laurentiana Lyster, 1940 is considered to be identical with the latter. A new species, R. milleri, is described. A host list and the geographical distribution of the 33 species of Rhabdochona so far recorded are given.


2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


2021 ◽  
Vol 95 (S83) ◽  
pp. 1-41
Author(s):  
John S. Peel

AbstractAn assemblage of 50 species of small shelly fossils is described from Cambrian Series 2 (Stage 4) strata in North Greenland, the present day northernmost part of the paleocontinent of Laurentia. The fossils are derived from the basal member of the Aftenstjernesø Formation at Navarana Fjord, northern Lauge Koch Land, a condensed unit that accumulated in a sediment-starved outer ramp setting in the transarctic Franklinian Basin, on the Innuitian margin of Laurentia. Most other small shelly fossil assemblages of similar age and composition from North America are described from the Iapetan margin of Laurentia, from North-East Greenland south to Pennsylvania. Trilobites are uncommon, but include Serrodiscus. The Australian bradoriid Spinospitella is represented by a complete shield. Obolella crassa is the only common brachiopod. Hyoliths, including Cassitella, Conotheca, Neogloborilus, and Triplicatella, are abundant and diverse, but most are represented just by opercula. Sclerites interpreted as stem-group aculiferans (sachitids) are conspicuous, including Qaleruaqia, the oldest described paleoloricate, Ocruranus?, Inughuitoconus n. gen., and Hippopharangites. Helcionelloid mollusks are diverse, but not common; they are associated with numerous specimens of the bivalve Pojetaia runnegari. The fauna compares best with that of the upper Bastion Formation of North-East Greenland, the Forteau Formation of western Newfoundland, and the Browns Pond Formation of New York, but several taxa have a world-wide distribution. Many specimens are encrusted with crystals of authigenic albite. New species: Anabarella? navaranae, Stenotheca? higginsi, Figurina? polaris, Hippopharangites groenlandicus, Inughuitoconus borealis, and Ocruranus? kangerluk.UUID: http://zoobank.org/160a17b1-3166-4fcf-9849-a3cabd1e04a3


1968 ◽  
Vol 42 (3-4) ◽  
pp. 295-298 ◽  
Author(s):  
J. M. Hamilton ◽  
A. W. McCaw

Aelurostrongylus abstrusus, the lungworm of the cat, has a world wide distribution and has been reported from countries as far apart as America, Great Britain and Palestine. It has a complex life cycle insofar as a molluscan intermediate host is essential and it is possible that auxiliary hosts also play an important part. In Britain, the incidence of active infestation of cats with the parasite has been recorded as 19·4% (Lewis, 1927) and 6·6% (Hamilton, 1966) but the latter author found that, generally, the clinical disease produced by the parasite was of a mild nature. It is known that the average patent period of the infestation in the cat is 8–13 weeks and it seems likely that, in that time, a considerable number of first stage larvae would be evacuated. Information on that point is not available and the object of the following experiment was to ascertain the number of larvae produced by cats during the course of a typical infestation.


Author(s):  
B. L. K. Brady

Abstract A description is provided for Beauveria bassiana. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS & SUBSTRATA: All stages of insects of all groups; lungs of wild rodents, nasal swab of horse; man; giant tortoise. The fungus overwinters in vegetable matter and is found in the soil. DISEASE: The fungus has been known since 1835 as the cause of the muscardine disease of silkworms. Although B. bassiana has multiplied in bees in laboratory tests it has so far not been recorded from bees in nature (Bailey, 1971). According to Wasti & Hartman (1975) penetration of the cuticle of gypsy moth (Porthetria dispar[Lymantria dispar]) larvae takes place 24 h after 2nd instar larvae have crawled over a culture of B. bassiana and within 64h the interior of the insect is completely filled with hyphae. These authors also note penetration of the gut wall. Fargues & Vey (1974), who sprayed conidia on to 3rd instar larvae of Leptinostarsa decemlineata (Colorado beetle), showed that conidia germinate on the surface of the integument, penetrate the loosening skin, and blastospores develop in the moulting fluid, infecting the new integument as it forms. Some individuals cannot finish the moult, in others the delicate new skin ruptures and hyphae enter the haemolymph. GEOGRAPHICAL DISTRIBUTION: World wide.


Author(s):  
Z. Kozakiewicz

Abstract A description is provided for Eurotium rubrum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: A xerotolerant species with the same host range as E. repens (IMI Sheet 1255). DISEASES: Not known to be a pathogen of animals or man, but the species has been isolated from human nails (Smith, 1989). GEOGRAPHICAL DISTRIBUTION: World-wide.


Author(s):  
A. K. Sarbhoy

Abstract A description is provided for Cunninghamella echinulata. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On decaying flowers of Cucurbita pepo, dung and soil. DISEASE: Reported pathogenic to Spanish pumpkin (Cucurbita maxima) at Chandigarh and neighbouring villages in the Punjab, India by Grover (1965). Symptoms recognizable when the flowers begin to die off gradually. Diseased flowers do not open properly. Infected flowers are covered with the cottony mycelium of the pathogen and infected fruits may become detached from the plant and continue to rot on the soil. Leaves and stalks are also frequently infected. GEOGRAPHICAL DISTRIBUTION: World-wide (mostly tropical countries). TRANSMISSION: Air borne; may survive in fragments of mummified pumpkin fruit up to 32 months.


Author(s):  
A. K. Sarbhoy

Abstract A description is provided for Rhizopus stolonifer. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On fruits: papaya, plum, strawberry, sweet potato, cotton, groundnuts and in rhizosphere soil of various plants, soil and decaying leaves. DISEASE: Causing fruit rot of plum, Jak fruit (Artocarpus integrifolia[Artocarpus integer]), strawberry ('leak'), peach and a rot of sweet potato (Ipomoea batatas) and cotton bolls. GEOGRAPHICAL DISTRIBUTION: World-wide. TRANSMISSION: Air-borne and also by fruit flies, Drosophila melanogaster, associated with decaying fruit (RAM 43, 576).


Sign in / Sign up

Export Citation Format

Share Document