Soma and axon diameter distributions and central projections of ferret retinal ganglion cells

1996 ◽  
Vol 13 (4) ◽  
pp. 773-786 ◽  
Author(s):  
T. Fitzgibbon ◽  
R. J. Wingate ◽  
I. D. Thompson

AbstractUsing a combination of retrograde horseradish peroxidase (HRP) labelling, silver staining, and electron microscopy, we have assessed the relationship between retinal ganglion cell soma size and axon diameter in the adult ferret (Mustela putorius furo). Retinal ganglion cells were labelled following injections of HRP into the lateral geniculate nucleus (LGN), superior colliculus (SC), or LGN+SC. The soma size distributions following LGN, SC, or LGN+SC injections were all unimodal showing considerable overlap between different cell classes. This was confirmed for alpha cells, identified on the basis of dendritic filling or from neurofibrillar-stained retinae. Analysis of the soma size and axon diameters of a population of heavily labelled retinal ganglion cells showed a significant correlation between the two. However, the overall distribution of intraretinal axon diameter was bimodal with an extended tail. Analysis of the ganglion cell distributions in the adult ferret indicates that beta cells comprise about 50.5–55%, gamma 42.5–47%, and alpha 2.5% of the ganglion cell population. This implies that the proportion of gamma, beta, alpha cells in both cat and ferret retina is highly conserved despite differences in visual specialization in the two species.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Geva ◽  
Noga Gershoni-Emek ◽  
Luana Naia ◽  
Philip Ly ◽  
Sandra Mota ◽  
...  

AbstractOptic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 389-398 ◽  
Author(s):  
Luiz R. G. Britto ◽  
Dȃnia E. Hamassaki-Britto

AbstractA small number of enkephalin-like immunoreactive cells were observed in the ganglion cell layer of the pigeon retina. Many of these neurons were identified as ganglion cells, since they were retrogradely labeled after injections of fluorescent latex microspheres in the contralateral optic tectum. These ganglion cells were mainly distributed in the inferior retina, and their soma sizes ranged from 12–26 μm in the largest axis. The enkephalin-containing ganglion cells appear to represent only a very small percentage of the ganglion cells projecting to the optic tectum (less than 0.1%). Two to 7 weeks after removal of the neural retina, there was an almost complete elimination of an enkephalin-like immunoreactive plexus in layer 3 of the contralateral, rostrodorsal optic tectum. These data provide evidence for the existence of a population of enkephalinergic retinal ganglion cells with projections to the optic tectum.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5713-5724 ◽  
Author(s):  
K.L. McCabe ◽  
E.C. Gunther ◽  
T.A. Reh

Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 μm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 857-867 ◽  
Author(s):  
R.W. Guillery ◽  
G. Jeffery ◽  
B.M. Cattanach

Female mice showing albino mosaicism due to an X-autosome translocation [Is(In7;X)Ct] have been studied in order to investigate the relationship between the distribution of melanin and the formation, early in development, of the abnormally small uncrossed retinofugal pathway characteristically found in all albino mammals. Earlier evidence indicates that cells normally bearing melanin play a role in producing the abnormality. In the mosaic mice, the albino gene is expressed in only about half of the cells due to random X-inactivation and the patches of normal and albino cells are extremely small relative to total retinal size (less than 1/50). We argued that if all the cells that would normally bear melanin play a role in producing the albino abnormality then the mosaic mice would have a pathway abnormality, about half the size of that in the albino mice. If, however, only a small patch of these cells plays a role, as has been proposed in earlier studies, then one would expect the size of the uncrossed pathway to be highly variable in the mosaic mice. The size of the uncrossed pathway was assessed by placing horseradish peroxidase in the region of the optic tract and lateral geniculate nucleus unilaterally and then counting the number of retrogradely labelled retinal ganglion cells on the same side. The mosaic mice showed a highly variable uncrossed pathway. In some of the mosaic mice, it was the same size as in the albinos and, in others, it was the same size as in normally pigmented mice. Surprisingly, in a small number of mosaic mice, the uncrossed pathway was larger than normal. Whether this relatively rare occurrence of a supernormal uncrossed pathway is due to the higher gene dosage or to the translocation itself remains an open question.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
James R Tribble ◽  
Asta Vasalauskaite ◽  
Tony Redmond ◽  
Robert D Young ◽  
Shoaib Hassan ◽  
...  

Abstract Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure–function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure–function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.


Sign in / Sign up

Export Citation Format

Share Document