G protein coupling profile of mGluR6 and expression of Gα proteins in retinal ON bipolar cells

2006 ◽  
Vol 23 (6) ◽  
pp. 909-916 ◽  
Author(s):  
LIANTIAN TIAN ◽  
PAUL J. KAMMERMEIER

Metabotropic glutamate receptor 6 (mGluR6) is a group III, pertussis toxin (PTX)-sensitive G protein coupled mGluR that plays a specialized role in the retina. Retinal ON bipolar cells, which receive direct glutamatergic input from photoreceptor cells, express mGluR6 as their primary postsynaptic glutamate receptor. Activation of mGluR6 in these cells initiates an intracellular signaling cascade ultimately leading to inhibition of a cation channel and cell hyperpolarization. The primary mediator of this pathway in vivo is Gαo, but the potential roles of other G proteins from the Gαi/o family in the regulation of this or other signaling pathways in ON bipolar cells are unclear. To determine which specific G proteins from the Gαi/o family are able to couple to mGluR6, a Gα reconstitution system was employed using PTX-insensitive Gα mutants expressed with mGluR6 in PTX-treated sympathetic neurons from the rat superior cervical ganglion (SCG). The efficiency of coupling to mGluR6 was Goa > Gob, Gi1 > Gi2, Gi3, whereas no coupling was observed with Gαz, nor with the retinal Gα proteins, rod (GNAT2) or cone (GNAT1) transducin (GαTr-R, GαTr-C). Finally, the expression of Gα proteins determined to couple with mGluR6 was examined in rat ON bipolar cells using single cell RT-PCR. Co-expression of mGluR6 message was used to distinguish ON from OFF bipolar cells. Expression of Gαo was detected in every ON bipolar cell examined. Message for Gαi1, which coupled moderately to mGluR6, was not detected in ON bipolar cells, nor was Gαi3, which coupled to mGluR6 in only a few cells but on average did not exhibit statistically significant coupling. Finally, though Gαi2 was detectable in ON bipolar cells, its coupling to mGluR6 in the SCG system was not significant. Together, these data indicate that signaling through mGluR6 in mammalian ON bipolar cells is highly focused, apparently acting through a single Gα protein subtype.

2009 ◽  
Vol 23 (5) ◽  
pp. 590-599 ◽  
Author(s):  
Jean-Pierre Vilardaga ◽  
Moritz Bünemann ◽  
Timothy N. Feinstein ◽  
Nevin Lambert ◽  
Viacheslav O. Nikolaev ◽  
...  

Abstract Many biochemical pathways are driven by G protein-coupled receptors, cell surface proteins that convert the binding of extracellular chemical, sensory, and mechanical stimuli into cellular signals. Their interaction with various ligands triggers receptor activation that typically couples to and activates heterotrimeric G proteins, which in turn control the propagation of secondary messenger molecules (e.g. cAMP) involved in critically important physiological processes (e.g. heart beat). Successful transfer of information from ligand binding events to intracellular signaling cascades involves a dynamic interplay between ligands, receptors, and G proteins. The development of Förster resonance energy transfer and bioluminescence resonance energy transfer-based methods has now permitted the kinetic analysis of initial steps involved in G protein-coupled receptor-mediated signaling in live cells and in systems as diverse as neurotransmitter and hormone signaling. The direct measurement of ligand efficacy at the level of the receptor by Förster resonance energy transfer is also now possible and allows intrinsic efficacies of clinical drugs to be linked with the effect of receptor polymorphisms.


2018 ◽  
Author(s):  
Helen Farrants ◽  
Amanda Acosta Ruiz ◽  
Vanessa A. Gutzeit ◽  
Dirk Trauner ◽  
Kai Johnsson ◽  
...  

AbstractG protein-coupled receptors (GPCRs) mediate the transduction of extracellular signals into complex intracellular responses. Despite their ubiquitous roles in physiological processes and as drug targets for a wide range of disorders, the precise mechanisms of GPCR function at the molecular, cellular, and systems levels remain partially understood. In order to dissect the function of individual receptors subtypes with high spatiotemporal precision, various optogenetic and photopharmacological approaches have been reported that use the power of light for receptor activation and deactivation. Here, we introduce a novel and, to date, most remote way of applying photoswitchable orthogonally remotely-tethered ligands (PORTLs) by using a SNAP-tag fused nanobody. Our nanobody-photoswitch conjugates (NPCs) can be used to target a GFP-fused metabotropic glutamate receptor by either gene-free application of purified complexes or co-expression of genetically encoded nanobodies to yield robust, reversible control of agonist binding and subsequent downstream activation. By harboring and combining the selectivity and flexibility of both nanobodies and self-labelling enzymes, we set the stage for targeting endogenous receptors in vivo.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Matthew M Meleka ◽  
Shelby Dahlen ◽  
Alethia J Edwards ◽  
Matthew Medcalf ◽  
Kevin D Moeller ◽  
...  

Chronic blockade of individual G protein coupled receptors (GPCRs) has proven to be inadequate strategy for managing hypertension partly because the subcellular heterotrimeric G proteins that propagate intracellular signaling can simultaneously couple to several other vasopressor receptors. Whether blood pressure can better be controlled by directly targeting G proteins has not been thoroughly investigated due to paucity of selective, cell-permeable inhibitors. Here, we tested whether chemical inhibition of Gq/11 proteins in vivo and ex vivo using recently discovered small-molecule inhibitor ligands, YM-254890 (YM), FR-900359 (FR) and WU-07047 (WU) is sufficient to reverse hypertension in mice. Using ex vivo vessel reactivity assay, we found that Gq/11 inhibitors markedly reduced vasoconstriction evoked with phenylephrine (PE), vasopressin, endothelin-1, and the thromboxane analog U-46619. Blockade of PE-induced contractility by the Gq/11 inhibitors showed the following rank-order potency: FR LogIC50 -0.008 ± 0 > YM LogIC50 -0.49 ± 0 > WU LogIC50 -64.95 ± 6.4. YM and WU but not FR inhibited PE-induced vasoconstriction through G protein-dependent and independent pathways by blocking L-type calcium channel-mediated Ca 2+ influx. Acute subcutaneous injection of FR and YM (0.3 mg/kg, s.c.) in normotensive and N ω -Nitro-L-arginine methyl ester (L-NAME) hypertension mice elicited marked hypotension, which was more severe (ΔSBP = -25 ± 2.7 vs. ΔSBP = -21 ± 2.2 mmHg) and long lasting (FR t1/2 ≅ 12 hr vs. YM t1/2 ≅ 4 hr) after the injection of FR relative to YM. In DOCA-salt hypertension mice, chronic injection of FR (0.3 mg/kg, s.c., daily for seven days) reversed hypertension (vehicle SBP: 149 ± 5 vs. FR SBP: 117 ± 7 mmHg) and sustained blood pressure reduction several days after terminating the injection regimen (DOCA SBP: 141 ± 2 vs. SBP 5 days post FR: 128 ± 5 mmHg). Our results together support the hypothesis that increased Gq/11 activity in blood pressure-regulating organs is involved in the pathogenesis of hypertension, and that direct systemic blockade of Gq/11 reverses hypertension. The findings provide clear evidence for targeting Gq/11 in the cardiovascular system as an effective therapy for treating hypertension.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1407-1417 ◽  
Author(s):  
Simon J Dowell ◽  
Anne L Bishop ◽  
Susan L Dyos ◽  
Andrew J Brown ◽  
Malcolm S Whiteway

Abstract The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein βγ subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gβ (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gβγ coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Gα) and Ste18p (Gγ) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gβγ coiled-coil in Ste5p binding may set a precedent for Gβγ-effector interactions in more complex organisms.


2005 ◽  
Vol 22 (1) ◽  
pp. 55-63 ◽  
Author(s):  
SHIH-FANG FAN ◽  
STEPHEN YAZULLA

Cannabinoid CB1receptor (viaGs) and dopamine D2receptor (viaGi/o) antagonistically modulate goldfish cone membrane currents. As ON bipolar cells have CB1and D1receptors, but not D2receptors, we focused on whether CB1receptor agonist and dopamine interact to modulate voltage-dependent outward membrane K+currentsIK(V)of the ON mixed rod/cone (Mb) bipolar cells. Whole-cell currents were recorded from Mb bipolar cells in goldfish retinal slices. Mb bipolar cells were identified by intracellular filling with Lucifer yellow. The bath solution was calcium-free and contained 1 mM cobalt to block indirect calcium-dependent effects. Dopamine (10 μM) consistently increasedIK(V)by a factor of 1.57 ± 0.12 (S.E.M.,n= 15). A CB receptor agonist, WIN 55212-2 (0.25–1 μM), had no effect, but 4 μM WIN 55212-2 suppressedIK(V)by 60%. IfIK(V)was first increased by 10 μM dopamine, application of WIN 55212-2 (0.25–1 μM) reversibly blocked the effect of dopamine even though these concentrations of WIN 55212-2 had no effect of their own. If WIN 55212-2 was applied first and dopamine (10 μM) was added to the WIN-containing solution, 0.1 μM WIN 55212-2 blocked the effect of dopamine. All effects of WIN 55212-2 were blocked by coapplication of SR 141716A (CB1antagonist) and pretreatment with pertussis toxin (blocker of Gi/o) indicating actionviaCB1receptor activation of G protein Gi/o. Coactivation of CB1and D1receptors on Mb bipolar cells produces reciprocal effects onIK(V). The CB1-evoked suppression ofIK(V)is mediated by G protein Gi/o, whereas the D1-evoked enhancement is mediated by G protein Gs. As dopamine is a retinal “light” signal, these data support our notion that endocannabinoids function as a “dark” signal, interacting with dopamine to set retinal sensitivity.


2013 ◽  
Vol 210 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
Christine D. Pozniak ◽  
Arundhati Sengupta Ghosh ◽  
Alvin Gogineni ◽  
Jesse E. Hanson ◽  
Seung-Hye Lee ◽  
...  

Excessive glutamate signaling is thought to underlie neurodegeneration in multiple contexts, yet the pro-degenerative signaling pathways downstream of glutamate receptor activation are not well defined. We show that dual leucine zipper kinase (DLK) is essential for excitotoxicity-induced degeneration of neurons in vivo. In mature neurons, DLK is present in the synapse and interacts with multiple known postsynaptic density proteins including the scaffolding protein PSD-95. To examine DLK function in the adult, DLK-inducible knockout mice were generated through Tamoxifen-induced activation of Cre-ERT in mice containing a floxed DLK allele, which circumvents the neonatal lethality associated with germline deletion. DLK-inducible knockouts displayed a modest increase in basal synaptic transmission but had an attenuation of the JNK/c-Jun stress response pathway activation and significantly reduced neuronal degeneration after kainic acid–induced seizures. Together, these data demonstrate that DLK is a critical upstream regulator of JNK-mediated neurodegeneration downstream of glutamate receptor hyper-activation and represents an attractive target for the treatment of indications where excitotoxicity is a primary driver of neuronal loss.


Sign in / Sign up

Export Citation Format

Share Document