Thermohaline structure and variability in the Terra Nova Bay polynya, Ross Sea

2000 ◽  
Vol 12 (4) ◽  
pp. 493-508 ◽  
Author(s):  
G. Budillon ◽  
G. Spezie

Hydrological measurements from three cruises during the summers 1994/95, 1995/96 and 1997/98 in the western sector of the Ross Sea allow summer and year to year changes in heat and salt content in the Terra Nova Bay polynya to be analysed. Changes in the surface layer (upper pycnocline) followed the expected seasonal pattern of warming and freshening from the beginning to the end of the summer. These near-surface changes, expressed as net heating and salting rate, were about 11 W m−2 and -6 mg salt m−2 s−1. The heating changes were substantially lower than the estimated heat supplied by the atmosphere during the summer, which underlines the importance for this season of the advective component carried by the currents in the total heat budget. The year to year differences were about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the intermediate and deep layers, the summer heat and salt variability were of the same order as or one order higher than from one summer to the next. The differences in sign and magnitude for the heat change in the upper and in the lower pycnocline indicate a weak connection in the summer period between the surface heat fluxes and the deep waters. A local source of very cold water (with temperatures below the surface freezing point) of about 0.3 Sv has been detected close to the Terra Nova Bay coast. It arose out of the interaction of the shallow–intermediate layers of High Salinity Shelf Water with the coastal glaciers. The presence and the variability of this cold water point to the significant role of the thermohaline properties of Terra Nova Bay waters in controlling the floating glacier by governing the basal melting processes.

2009 ◽  
Vol 29 (15) ◽  
pp. 1887-1895 ◽  
Author(s):  
Giannetta Fusco ◽  
Giorgio Budillon ◽  
Giancarlo Spezie

2021 ◽  
pp. 1-14
Author(s):  
Deborah A. Le Bel ◽  
Christopher J. Zappa ◽  
Giorgio Budillon ◽  
Arnold L. Gordon

Abstract The density and salinity of High Salinity Shelf Water, a key component of Antarctic Bottom Water emanating from the Ross Sea, are intensified by brine rejection induced by ice formation within the Terra Nova Bay (TNB) polynya. Ocean mooring data from 2007, meteorological observations from automatic weather stations and a satellite-derived history of the opening of TNB polynya delineate variability in water column salinity linked to atmospheric forcing, with a period on the order of 10 days. Lagged correlation analysis indicates that on average salinity response lags the polynya opening by 2 days and the wind forcing by 5 days. We find stronger correlations of salinity with the wind during March through May and with the polynya open-water fraction during June through October, with decreasing lags in the latter period. A one-dimensional mixed-layer model incorporating thermodynamic ice formation captures the oscillations in salinity. A process study shows that the variability in the polynya open-water fraction governs the final salinity attained by the model as well as the salinity cycling. Variability in surface heat fluxes modulates that effect. Our work suggests that there is a more complex relationship between salinity, the polynya open-water fraction, and atmospheric forcing than previously suggested.


2011 ◽  
Vol 50 (3) ◽  
pp. 662-680 ◽  
Author(s):  
Shelley L. Knuth ◽  
John J. Cassano

Abstract In September 2009, the first unmanned aerial vehicles were flown over Terra Nova Bay, Antarctica, to collect information regarding air–sea interactions. Prior to the field season, wind and temperature data from a local automatic weather station (AWS) were collected from 1993 to 2007 and compared with an August–October 2006–08 satellite cyclone analysis to place the September 2009 observations into a broader context. AWS wind data revealed a strong tendency toward downslope flow in the region regardless of season, as the majority (55%) of winds were from the west to northwesterly directions. Most winds observed at the site were less than 20 m s−1, but 83% of the stronger winds were associated with downslope flow. Of 15 strong wind events (greater than 20 m s−1 for more than 10 h) evaluated during the cyclone analysis period, 100% occurred in the presence of a cyclone in the adjacent Ross Sea. Winter experienced the greatest number of strong wind events (68%), and summer had the least (4%). Most temperatures were between −15° and −25°C, with temperatures influenced by wind fluctuations. The cyclone analysis revealed that 64% of systems were comma shaped, and most cyclones (84%) within the Ross Sea were mesocyclones. A comparison of AWS data for Septembers 1993–2007 and September 2009 showed more strong wind events during 2009, while the cyclone analysis revealed a shift in cyclonic activity eastward. Reanalysis data comparing September 1993–2007 and September 2009 show an eastward shift in a deeper upper-level trough, indicating that September 2009 was an anomalous year.


2003 ◽  
Vol 15 (1) ◽  
pp. 63-75 ◽  
Author(s):  
ENRICO DE MARINIS ◽  
PAOLA PICCO ◽  
ROBERTO MELONI

This study looks at the feasibility of using Ocean Acoustic Tomography for long-term monitoring of polynyas using both observations in Terra Nova Bay polynya (Ross Sea) and simulations with a range dependent, multi-layered adiabatic normal mode acoustic propagation model. The summer sound speed profile is characterized by surface values of around 1450 m s−1, a minimum of 1441 m s−1 around 50 m depth and a linear increase with a 0.016 s−1 slope. Thus, the sound propagation is apparently ducted in the near surface layer and is refracted upward below it. During winter, due to water cooling and mixing processes, the subsurface minimum disappears, the surface sound speed is about 1440 m s−1 and no near surface layer ducted propagation occurs. Because of the specificity of the Terra Nova Bay seasonal sound speed profile and to cope with both deep and shelf water applicability, the feasibility study of acoustic inversion was undertaken using normal mode Match Field Tomography instead of the more classical travel-time inversion. The results from simulations demonstrate that ocean acoustic tomography is able to reproduce quite well the vertical sound speed profile, in particular the temporal evolution of summer stratification and winter mixing processes, thus providing information on the upper layer, where direct measurements are not possible.


2021 ◽  
pp. 103510
Author(s):  
Alessandro Cau ◽  
Claudia Ennas ◽  
Davide Moccia ◽  
Olga Mangoni ◽  
Francesco Bolinesi ◽  
...  

2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


2004 ◽  
Vol 23 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Maria De Domenico ◽  
Angelina Lo Giudice ◽  
Luigi Michaud ◽  
Marcello Saitta ◽  
Vivia Bruni

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153254 ◽  
Author(s):  
Roksana Majewska ◽  
Peter Convey ◽  
Mario De Stefano

1999 ◽  
Vol 11 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Filippo Mangani ◽  
Michela Maione ◽  
Luciano Lattanzi

CCl3F (or CFC-11) and CCl2F2 (or CFC-12) were determined in air samples collected, during subsequent summer Antarctic campaigns, in different sampling sites in the Ross Sea Region. The samples were analysed by GC-ECD after enrichment. Data obtained since 1988–89 were plotted to observe the trend of CFCs atmospheric concentration levels. A decrease in the rate of increase of CFC-12 concentration was observed, whilst the concentration of CFC-11 was actually seen to be decreasing.


2005 ◽  
Vol 35 (3) ◽  
pp. 395-400 ◽  
Author(s):  
S S C. Shenoi ◽  
D. Shankar ◽  
S. R. Shetye

Abstract The accuracy of data from the Simple Ocean Data Assimilation (SODA) model for estimating the heat budget of the upper ocean is tested in the Arabian Sea and the Bay of Bengal. SODA is able to reproduce the changes in heat content when they are forced more by the winds, as in wind-forced mixing, upwelling, and advection, but not when they are forced exclusively by surface heat fluxes, as in the warming before the summer monsoon.


Sign in / Sign up

Export Citation Format

Share Document