Geology, age and origin of the Mount Willing area (Prince Charles Mountains, East Antarctica)

1999 ◽  
Vol 11 (3) ◽  
pp. 338-352 ◽  
Author(s):  
E.V. Mikhalsky ◽  
A.A. Laiba ◽  
B.V. Beliatsky ◽  
K. Stüwe

Mount Willing in the Prince Charles Mountains (East Antarctica) is part of the Fisher Volcano–plutonic complex which formed as part of the global-scale Grenvillian mobile belt system. Mount Willing is composed of four rock complexes: 1) a metamorphic sequence, 2) gabbro intrusions, 3) deformed felsic intrusives, and 4) abundant post-metamorphic dykes and veins. Three rock types constitute the metamorphic sequence: amphibole–biotite felsic plagiogneiss, mafic to intermediate biotite–amphibole schist, and biotite paragneiss. The bulk composition of the mafic schists classifies them as tholeiitic basalts, and rarely as basaltic andesites or andesites. Index mg ranges widely from 47 to 71. Concentrations of TiO2, P2O5, and high-field strength elements are high in some rocks. These rocks are thought to have been derived from enriched (subcontinental) mantle sources. Sm–Nd and U–Pb isotopic data indicate a series of Mesoproterozoic thermal events between 1100 and 1300 Ma. In particular, these events occurred at 1289 ± 10 Ma (volcanic activity), at 1177 ± 16 Ma (tonalite intrusion), at 1112.7 ± 2.4 and at 1009 ± 54 Ma (amphibolite facies metamorphic events). Rb–Sr systematics also indicates a thermal overprint at 636 ± 13 Ma. Mafic schists show low initial 877Sr/86Sr ratios between 0.7024 and 0.7030. Felsic rocks show higher Sri values between 0.7037 and 0.7061. Basaltic andesite metavolcanic and plutonic rocks form a calc-alkaline evolutionary trend, and probably originated from subduction-modified mantle sources in a convergent plate margin environment. An oceanic basin may have existed in central Prince Charles Mountains about 1300 Ma ago and was closed as a result of continental collision around 1000 to 800 Ma.

2020 ◽  
Author(s):  
Yuyu Li ◽  
◽  
K.S. Panter ◽  
John L. Smellie ◽  
Jerzy S. Blusztajn ◽  
...  

2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


2020 ◽  
Author(s):  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer ◽  
Paul J. Tackley ◽  
Paula Koelemeijer

<p>Despite stirring by vigorous convection over billions of years, the Earth’s lower mantle appears to be chemically heterogeneous on various length scales. Constraining this heterogeneity is key for assessing Earth’s bulk composition and thermochemical evolution, but remains a scientific challenge that requires cross-disciplinary efforts. On scales below ~1 km, the concept of a “marble cake” mantle has gained wide acceptance, emphasising that recycled oceanic lithosphere, deformed into streaks of depleted and enriched compositions, makes up much of the mantle. On larger scales (10s-100s of km), compositional heterogeneity may be preserved by delayed mixing of this marble cake with either intrinsically-dense or intrinsically-strong materials. Intrinsically dense materials may accumulate as piles at the core-mantle boundary, while intrinsically viscous domains (e.g., enhanced in the strong mineral bridgmanite) may survive as “blobs” in the mid-mantle for large timescales, such as plums in the mantle “plum pudding”<sup>1,2</sup>. While many studies have explored the formation and preservation of either intrinsically-dense (recycled) or intrinsically-strong (primordial) heterogeneity, only few if any have quantified mantle dynamics in the presence of different types of heterogeneity with distinct physical properties.<span> </span></p><p>To address this objective, we use state-of-the-art 2D numerical models of global-scale mantle convection in a spherical-annulus geometry. We explore the effects of the <em>(i)</em> physical properties of primordial material (density, viscosity), <em>(ii)</em> temperature/pressure dependency of viscosity, <em>(iii)</em> lithospheric yielding strength, and <em>(iv)</em> Rayleigh number on mantle dynamics and mixing. Models predict that primordial heterogeneity is preserved in the lower mantle over >4.5 Gyr as discrete blobs for high intrinsic viscosity contrast (>30x) and otherwise for a wide range of parameters. In turn, recycled oceanic crust is preserved in the lower mantle as “marble cake” streaks or piles, particularly in models with a relatively cold and stiff mantle. Importantly, these recycled crustal heterogeneities can co-exist with primordial blobs, with piles often tending to accumulate beneath the primordial domains. This suggests that the modern mantle may be in a hybrid state between the “marble cake” and “plum pudding” styles.<span> </span></p><p>Finally, we put our model predictions in context with recent discoveries from seismology. We calculate synthetic seismic velocities from predicted temperatures and compositions, and compare these synthetics to tomography models, taking into account the limited resolution of seismic tomography. Convection models including preserved bridgmanite-enriched domains along with recycled piles have the potential of reconciling recent seismic observations of lower-mantle heterogeneity<sup>3</sup> with the geochemical record from ocean-island basalts<sup>4,5</sup>, and are therefore relevant for assessing Earth’s bulk composition and long-term evolution.<span> </span></p><p><sup>1</sup> Ballmer et al. (2017), <em>Nat. Geosci</em>., 10.1038/ngeo2898<br><sup>2</sup> Gülcher et al. (in review), <em>EPSL</em>: Variable dynamic styles of primordial heterogeneity preservation in Earth’s lower mantle <br><sup>3</sup> Waszek et al. (2018), <em>Nat. Comm., </em>10.1038/s41467-017-02709-4 <br><sup>4</sup> Hofmann (1997), <em>Nature, </em>10.1038/385219a0; <br><sup>5</sup> Mundl et al. (2017), <em>Science, </em>10.1126/science.aal4179</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Subhash Singh ◽  
Bert De Waele ◽  
Anjali Shukla ◽  
B. H. Umasankar ◽  
Tapas Kumar Biswal

We have dated the South Delhi orogeny, Aravalli-Delhi Mobile Belt (ADMB), NW India, using the tectonic fabric, geochemistry, and zircon-monazite geochronology as the proxies. The South Delhi Terrane (SDT), a passive margin domain in the ADMB, consists of multiply deformed (D1–D4) greenschist facies rocks and several granite plutons. The D1 deformation is characterized by pervasive isoclinal recumbent F1 fold and axial planar tectonometamorphic fabric, S1, developed in all rock types. The S1 minerals belong to peak greenschist facies metamorphism, M1, suggesting syntectonic nature of M1 with D1. The age of the D1-M1 is constrained by the syncollisional peralkaline S type Sewariya granite which is characterized by magmatic/submagmatic fabric (Sm) coplanar with the S1. The margin of the pluton is turned into quartzofeldspathic gneiss carrying the evidence of high temperature deformation. The age of Sewariya granite is estimated at ca. 878 Ma by zircon geochronology. The D1-M1 is further constrained by monazite geochronology of the mica schist at ca. 865–846 Ma. The other granite plutons and metarhyolite are pre-D1 and emplaced at ca. 992–946 Ma. The D2 deformation produced NE-SW trending open upright F2 folds coaxial with the F1, and northwesterly vergent F2–axial planar thrusts. Monazite geochronology constrains the D2 at ca. 811–680 Ma. The D3 is characterized by small to large scale NW-SE folds, and the D4 by faults and fractures marking the brittle deformation in the rocks. The D4 is constrained by monazite geochronology at ca. 588–564 Ma. There are upper amphibolitic tectonic slivers along the D2-Phulad thrust, belonging to the pre-Delhi rocks, which show ca. 1,638 Ma metamorphism age. From the above study, it is suggested that the South Delhi orogeny belongs to ca. 878–680 Ma marking the final amalgamation of Marwar Craton with the rest of India. This overlaps the early phase of the Pan-African orogeny (900–630 Ma). The brittle deformation, D4, coincides with Kuunga orogeny (650–500 Ma). Our study implies that India, like other continents in the East Gondwana, underwent amalgamation of internal blocks until the late part of the Neoproterozoic.


2021 ◽  
Author(s):  
◽  
Richard Irving Walcott

<p>The Red Hill Complex is an essentially concordant ultramafic body enclosed in Upper Paleozoic flysch facies sediments which include Pelorus Group (oldest), Lee River Group and Maitai Group. The Pelorus Group contains rare submarine lavas and is largely derived from spilitic volcanics. The Lee River Group consists of spilitic pillow lavas, volcanic breccias and spilitic basalts and dolerites. The Maitai Group consists of limestone, sandstone and argillite; an extensive conglomerate lens in the argillites is largely composed of andesitic pebbles. The Red Hill Complex is a 12,000 ft. thick lens and is part of a sheet of peridotites which may extend 40 miles northward to Dun Mountain. The Complex is divided into a 3000 ft thick Basal Zone of massive harzburgite and a 9000 ft thick Upper Zone of layered harzburgite and dunite with minor variants, feldspathic-peridotite, eucrite, lherzolite, wehrlite and pyroxenite. The bulk composition of both zones is approximately the same but the Upper Zone contains about 0.2 per cent feldspar not present in the Basal Zone. There is no significant regional change in mineral chemistry throughout the Complex and the average composition is about; olivine Fo91, 70 per cent; orthopyroxene, En88, 22 per cent; clinopyroxene, 5 per cent; feldspar An96, less than 0.2 per cent; spinel 2 per cent. Layering and foliation are common in the top of the Upper Zone. Layering is of at least two generations of which at least one is of metamorphic origin. Metamorphic layering was formed by metasomatic replacement probably along subhorizontal shear planes during intrusion of the ultramafic sheet. Pyroxene pegmatites formed after flow ceased. The diversity of rock types in the top of the Upper Zone is considered by the writer to have been caused by metamorphic differentiation of parent material the same composition as the Basal Zone. The preferred orientation of olivine in lineated, foliated, laminated and layered rocks has the same pattern suggesting a close genetic relationship between those structures. Evidence strongly supports a tectonic origin for the preferred orientation. Rocks in the Upper Zone are xenomorphic-granular in texture and those in the Basal Zone are typically protoclastic. Xenomorphic-granular textures are derived in part from protoclastic by post-deformational recrystallization. The ultramafic rocks are cut by a number of dykes composed of hornblende-labradorite, hypersthene-augite-bytownite assemblages or minor variants of these. The dykes were intruded shortly after emplacement of the ultramafic rocks. The Red Hill Complex is considered to have been emplaced as a sheet at shallow depths which intruded superficial deposits on the ocean floor and was later overlain by volcanics</p>


2008 ◽  
Vol 35 (1) ◽  
pp. 109 ◽  
Author(s):  
MARIA DE FÁTIMA BITENCOURT ◽  
EVERTON MARQUES BONGIOLO ◽  
RUY PAULO PHILIPP ◽  
LUIZ FERNANDO GRAFULHA MORALES ◽  
ROGÉRIO ROQUE RUBERT ◽  
...  

In southern Brazil, the Florianopolis Batholith results from prolonged, mainly granitic magmatism, as part of the Neoproterozoic Dom Feliciano Belt. Plutonic associations in this belt are related to transpressive tectonism (650-580 Ma) in post-collisional setting, where the translithospheric discontinuities of the Southern Brazilian Shear Belt have triggered magmatism, acting as channels for melts originated in deep crustal or mantle sources. In the region of Garopaba-Paulo Lopes, a fraction of this magmatism was studied, resulting in a formal proposition for its stratigraphic organization in igneous suites. A small volume of gneissic host rocks is found as roof pendants. The Paulo Lopes Suite comprises the foliated Paulo Lopes Granite, Garopaba Granitoids and Silveira Gabbro. It is characterized as porphyritic granitoids of high-K tholeiitic affinity, coeval with mafic, tholeiitic magmatism. It is followed by metaluminous, alkaline series granitoids of the Pedras Grandes Suite, namely the Vila da Penha Granite, comprising heterogranular and porphyritic facies, and the Serra do Tabuleiro Granite, comprising heterogranular, equigranular and porphyritic facies. The Cambirela Suite, last magmatic episode in the study area, encompasses alkaline plutonic, volcanic and subvolcanic rock types, as the Ilha Granite, the Cambirela Rhyolite and the Itacorumbi Granite. Hypabissal rocks are also part of this suite, and result from recurrent acid and basic magma pulses emplaced either as idividual dykes or composite ones. The magmatic associations described in this region attest to magma emplacement under a moderate to low stress field, possibly extinguished by the time the Cambirela Suite crystallized. Their age values indicate that they are mostly contemporaneous to the post-collisional, syntectonic magmatism of the Southern Brazilian Shear Belt, and the preservation of magmatic structures such as modal layering, relatively uncomon in granitoids, may also be attributed to their emplacement far from the main deformation sites. Features indicative of coeval mafic and felsic magmas are described in all three magmatic associations, and are especially significant in the Paulo Lopes and Cambirela suites. They attest to continuous mantle participation in the batholith construction.


1998 ◽  
Vol 35 (11) ◽  
pp. 1252-1270 ◽  
Author(s):  
S M Barr ◽  
R P Raeside ◽  
C E White

Geological correlations between Cape Breton Island and Newfoundland are apparent both in surface geology and at deeper crustal levels, based on similarities in Sm-Nd isotopic signatures. The Mira terrane of southeastern Cape Breton Island is part of the Avalon terrane sensu stricto and is composed of Neoproterozoic volcanic-sedimentary-plutonic belts and overlying Cambrian rocks directly comparable to those in the western part of the Newfoundland Avalon terrane. The Bras d'Or terrane is also mainly of Neoproterozoic age, but shows lithological and isotopic contrasts with the Mira terrane. Small areas of similar Neoproterozoic rocks occur in southern Newfoundland and to the north as inliers in the Exploits terrane. The Bras d'Or terrane and similar rocks in Newfoundland are interpreted to represent a peri-Gondwanan terrane where rocks of the Gander terrane were later formed. Hence this area is part of the Central Mobile Belt and distinct from Avalon terrane sensu stricto. The Aspy terrane is a complex area that may include fragments of Bras d'Or crust and components of the Gander, Exploits, and possibly Notre Dame terranes of Newfoundland. It formed by subduction and back-arc basin opening and closure during the Silurian to Early Devonian. The Blair River Inlier is a fragment of Grenvillian rocks, similar to those in the Grenvillian inliers in the Humber zone of western Newfoundland in terms of age, rock types, and isotopic composition. Silurian and Devonian promontory-promontory collision resulted in juxtaposition and stacking of these elements in Cape Breton Island, as in the Hermitage Flexure - Port aux Basques area of Newfoundland. Because the lower crust under Bras d'Or - Gander - Aspy terranes seems distinct from that under Avalon terrane sensu stricto, it is preferable to use the term peri-Gondwanan rather than Avalonian to refer to these areas.


2020 ◽  
Author(s):  
Egidio Armadillo ◽  
Fausto Ferraccioli ◽  
Alessandro Ghirotto ◽  
Duncan Young ◽  
Donald Blankenship ◽  
...  

&lt;p&gt;The Wilkes Subglacial Basin (WSB) is a major intraplate tectonic feature in East Antarctica. It stretches for ca 1400 km from the edge of the Southern Ocean, where it is up to 600 km wide towards South Pole, where it is less than 100 km wide. Recent modelling of its subice topography (Paxman et al., 2019, JGR) lends support to a long-standing hypothesis predicting that the wide basin is linked to flexure of more rigid and mostly Precambrian cratonic lithosphere induced by the Cenozoic uplift of the adjacent Trasantarctic Mountains,. However, there is also mounting evidence from potential field and radar exploration that its narrower structurally controlled sub-basins may have formed in response to more localised Mesozoic to Cenozoic extension and transtension that preferentially steered glacial erosion (Paxman et al., 2018, GRL). &amp;#160;&lt;/p&gt;&lt;p&gt;Here we exploit recent advancements in regional aerogeophysical data compilations and continental scale satellite gravity gradient imaging with the overarching aim of helping unveil the degree of 4D heterogeneity in the crust and lithosphere beneath the WSB. New views of crustal and lithosphere thickness stem from 3D satellite gravity modelling (Pappa et al., 2019, JGR) and these can be compared with predictions from previous flexural modelling and seismological results. By stripping out the computed effects of crustal and lithosphere thickness variations we then obtain residual intra-crustal gravity anomalies. These are in turn compared with a suite of enhanced aeromagnetic anomaly images. We then calculate depth to magnetic and gravity source estimates and use these results to help constrain the first combined 2D magnetic and gravity models for two selected regions within the WSB.&lt;/p&gt;&lt;p&gt;One first model reveals a major lithospheric scale boundary along the eastern margin of the northern WSB. It separates the Cambro-Ordovician Ross Orogen from a newly defined composite Precambrian Wilkes Terrane that forms the unexposed crustal basement buried beneath partially exposed early Cambrian metasediments and more recent Devonian to Jurassic sediments.&lt;/p&gt;&lt;p&gt;Our second model investigates a sector of the WSB further south, where the proposed Precambrian basement is modelled as being both shallower and of more felsic bulk composition. Although the lack of drilling precludes direct sampling of this cryptic basement, aeromagnetic anomaly patterns suggest that it may be akin to late Paleoproterozoic to Mesoproterozoic igneous basement exposed in part of the Gawler and Curnamona cratons in South Australia. We conclude that these first order differences in basement depth, bulk composition and thickness of metasediment/sediment cover are a key and previously un-appreciated intra-crustal boundary condition, which is likely to affect geothermal heat flux variability beneath different sectors of the WSB, with potential cascading effects on subglacial hydrology and the flow of the overlying East Antarctic Ice Sheet.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document