The formation, preservation and seismic signatures of chemical heterogeneities in the lower mantle

Author(s):  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer ◽  
Paul J. Tackley ◽  
Paula Koelemeijer

<p>Despite stirring by vigorous convection over billions of years, the Earth’s lower mantle appears to be chemically heterogeneous on various length scales. Constraining this heterogeneity is key for assessing Earth’s bulk composition and thermochemical evolution, but remains a scientific challenge that requires cross-disciplinary efforts. On scales below ~1 km, the concept of a “marble cake” mantle has gained wide acceptance, emphasising that recycled oceanic lithosphere, deformed into streaks of depleted and enriched compositions, makes up much of the mantle. On larger scales (10s-100s of km), compositional heterogeneity may be preserved by delayed mixing of this marble cake with either intrinsically-dense or intrinsically-strong materials. Intrinsically dense materials may accumulate as piles at the core-mantle boundary, while intrinsically viscous domains (e.g., enhanced in the strong mineral bridgmanite) may survive as “blobs” in the mid-mantle for large timescales, such as plums in the mantle “plum pudding”<sup>1,2</sup>. While many studies have explored the formation and preservation of either intrinsically-dense (recycled) or intrinsically-strong (primordial) heterogeneity, only few if any have quantified mantle dynamics in the presence of different types of heterogeneity with distinct physical properties.<span> </span></p><p>To address this objective, we use state-of-the-art 2D numerical models of global-scale mantle convection in a spherical-annulus geometry. We explore the effects of the <em>(i)</em> physical properties of primordial material (density, viscosity), <em>(ii)</em> temperature/pressure dependency of viscosity, <em>(iii)</em> lithospheric yielding strength, and <em>(iv)</em> Rayleigh number on mantle dynamics and mixing. Models predict that primordial heterogeneity is preserved in the lower mantle over >4.5 Gyr as discrete blobs for high intrinsic viscosity contrast (>30x) and otherwise for a wide range of parameters. In turn, recycled oceanic crust is preserved in the lower mantle as “marble cake” streaks or piles, particularly in models with a relatively cold and stiff mantle. Importantly, these recycled crustal heterogeneities can co-exist with primordial blobs, with piles often tending to accumulate beneath the primordial domains. This suggests that the modern mantle may be in a hybrid state between the “marble cake” and “plum pudding” styles.<span> </span></p><p>Finally, we put our model predictions in context with recent discoveries from seismology. We calculate synthetic seismic velocities from predicted temperatures and compositions, and compare these synthetics to tomography models, taking into account the limited resolution of seismic tomography. Convection models including preserved bridgmanite-enriched domains along with recycled piles have the potential of reconciling recent seismic observations of lower-mantle heterogeneity<sup>3</sup> with the geochemical record from ocean-island basalts<sup>4,5</sup>, and are therefore relevant for assessing Earth’s bulk composition and long-term evolution.<span> </span></p><p><sup>1</sup> Ballmer et al. (2017), <em>Nat. Geosci</em>., 10.1038/ngeo2898<br><sup>2</sup> Gülcher et al. (in review), <em>EPSL</em>: Variable dynamic styles of primordial heterogeneity preservation in Earth’s lower mantle <br><sup>3</sup> Waszek et al. (2018), <em>Nat. Comm., </em>10.1038/s41467-017-02709-4 <br><sup>4</sup> Hofmann (1997), <em>Nature, </em>10.1038/385219a0; <br><sup>5</sup> Mundl et al. (2017), <em>Science, </em>10.1126/science.aal4179</p>

2021 ◽  
Author(s):  
Matteo Desiderio ◽  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer

<p>According to geochemical and geophysical observations, Earth's lower mantle appears to be strikingly heterogeneous in composition. An accurate interpretation of these findings is critical to constrain Earth's bulk composition and long-term evolution. To this end, two main models have gained traction, each reflecting a different style of chemical heterogeneity preservation: the 'marble cake' and 'plum pudding' mantle. In the former, heterogeneity is preserved in the form of narrow streaks of recycled oceanic lithosphere, stretched and stirred throughout the mantle by convection. In the latter, domains of intrinsically strong, primordial material (enriched in the lower-mantle mineral bridgmanite) may resist convective entrainment and survive as coherent blobs in the mid mantle. Microscopic scale processes certainly affect macroscopic properties of mantle materials and thus reverberate on large-scale mantle dynamics. A cross-disciplinary effort is therefore needed to constrain present-day Earth structure, yet countless variables remain to be explored. Among previous geodynamic studies, for instance, only few have attempted to address how the viscosity and density of recycled and primordial materials affect their mutual mixing and interaction in the mantle.</p><p>Here, we apply the finite-volume code <strong>STAGYY</strong> to model thermochemical convection of the mantle in a 2D spherical-annulus geometry. All models are initialized with a lower, primordial layer and an upper, pyrolitic layer (i.e., a mechanical mixture of basalt and harzburgite), as is motivated by magma-ocean solidification studies. We explore the effects of material properties on the style of mantle convection and heterogeneity preservation. These parameters include (i) the intrinsic strength of basalt (viscosity), (ii) the intrinsic density of basalt, and (iii) the intrinsic strength of the primordial material.</p><p>Our preliminary models predict a range of different mantle mixing styles. A 'marble cake'-like regime is observed for low-viscosity primordial material (~30 times weaker than the ambient mantle), with recycled oceanic lithosphere preserved as streaks and thermochemical piles accumulating near the core-mantle boundary. Conversely, 'plum pudding' primordial blobs are also preserved when the primordial material is relatively strong, in addition to the 'marble cake' heterogeneities mentioned above. Most notably, however, the rheology and the density anomaly of basalt affect the appearance of both recycled and primordial heterogeneities. In particular, they control the stability, size and geometry of thermochemical piles, the enhancement of basaltic streaks in the mantle transition zone, and they influence the style of primordial material preservation. These results indicate the important control that the physical properties of mantle constituents exert on the style of mantle convection and mixing over geologic time. Our numerical models offer fresh insights into these processes and may advance our understanding of the composition and structure of Earth's lower mantle.</p>


2021 ◽  
Author(s):  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer ◽  
Paul J. Tackley

<p>The nature of compositional heterogeneity in Earth’s lower mantle is a long-standing puzzle that can inform about the thermochemical evolution and dynamics of our planet. On relatively small scales (<1km), streaks of recycled oceanic crust (ROC) and lithosphere are distributed and stirred throughout the mantle, creating a “marble cake” mantle. On larger scales (10s-100s of km), compositional heterogeneity may be preserved by delayed mixing of this marble cake with either intrinsically-dense or -strong materials of e.g. primordial origin. Intrinsically-dense materials may accumulate as piles at the core-mantle boundary, while intrinsically viscous (e.g., enhanced in the strong mineral MgSiO<sub>3 </sub>bridgmanite) may survive as blobs in the mid-mantle for large timescales (i.e., as plums in the mantle “plum pudding”). So far, only few, if any, studies have quantified mantle dynamics in the presence of different types of heterogeneity with distinct physical properties.<br><br>Here, we use 2D numerical models of global-scale mantle convection to investigate the coupled evolution and mixing of (intrinsically-dense) recycled and (intrinsically-strong) primordial material. We explore the effects of ancient compositional layering of the mantle, as motivated by magma-ocean solidification studies, and the physical parameters of the primordial material. Over a wide parameter range, primordial and recycled heterogeneity is predicted to coexist with each other. Primordial material usually survives as mid-to-large scale blobs in the mid-mantle, and this preservation is largely independent on the initial primordial-material volume. In turn, recycled oceanic crust (ROC) persists as piles at the base of the mantle and as small streaks everywhere else. The robust coexistence between recycled and primordial materials in the models indicate that the modern mantle may be in a hybrid state between the “marble cake” and “plum pudding” styles.<br><br>Finally, we put our model predictions in context with geochemical studies on early Earth dynamics as well as seismic discoveries of present-day lower-mantle heterogeneity. For the latter, we calculate synthetic seismic velocities from output model fields, and compare these synthetics to tomography models, taking into account the limited resolution of seismic tomography. Because of the competing effects of compositional and thermal anomalies on S-wave velocities, it is difficult to identify mid-mantle bridgmanitic domains in seismic tomography images. This result suggests that, if present, bridgmanitic domains in the mid-mantle may be “hidden” from seismic tomographic studies, and other approaches are needed to establish the presence/absence of these domains in the present-day deep Earth.</p>


2020 ◽  
Author(s):  
Antonio Manjón-Cabeza Córdoba ◽  
Maxim Ballmer

Abstract. The origin of intraplate volcanism is not explained by the plate tectonic theory, and several models have been put forward for explanation. One of these models involves Edge-Driven Convection (EDC), in which cold and thick continental lithosphere is juxtaposed to warm and thin oceanic lithosphere to trigger convective instability. To test whether EDC can produce long-lived high-volume magmatism, we run numerical models of EDC for a wide range of mantle properties and edge (i.e., the oceanic-continental transition) geometries. We find that the most important parameters that govern EDC are the rheological paramaters mantle viscosity η0 and activation energy Ea. However, even the maximum melting volumes found in our models are insufficient to account for island-building volcanism on old seafloor, such as at the Canary Islands and Cape Verde. Also, beneath old seafloor, localized EDC-related melting commonly transitions into widespread melting due to small-scale sublithospheric convection, inconsistent with the distribution of volcanism at these volcanic chains. In turn, EDC is a good candidate to sustain the formation of small seamounts on young seafloor, as it is a highly transient phenomenon that occurs in all our models soon after initiation. In a companion paper, we investigate the implications of interaction of EDC with mantle-plume activity.


Solid Earth ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 613-632
Author(s):  
Antonio Manjón-Cabeza Córdoba ◽  
Maxim D. Ballmer

Abstract. The origin of intraplate volcanism is not explained by plate tectonic theory, and several models have been put forward for explanation. One of these models involves edge-driven convection (EDC), in which cold and thick continental lithosphere is juxtaposed with warm and thin oceanic lithosphere to trigger convective instability. To test whether EDC can produce long-lived high-volume magmatism, we run numerical models of EDC for a wide range of mantle properties and edge (i.e., the oceanic–continental transition) geometries. We find that the most important parameters that govern EDC are the rheological parameters mantle viscosity η0 and activation energy Ea. However, even the maximum melting volumes predicted by our most extreme cases are insufficient to account for island-building volcanism on old seafloor, such as at the Canary Islands and Cabo Verde. Also, beneath old seafloor, localized EDC-related melting commonly transitions into widespread melting due to small-scale sublithospheric convection, inconsistent with the distribution of volcanism at these volcano chains. In turn, EDC is a good candidate to sustain the formation of small seamounts on young seafloor, as it is a highly transient phenomenon that occurs in all our models soon after initiation. In a companion paper, we investigate the implications of interaction of EDC with mantle plume activity (Manjón-Cabeza Córdoba and Ballmer, 2021).


2020 ◽  
Author(s):  
Joana Carvalho ◽  
Raffaele Bonadio ◽  
Graça Silveira ◽  
Sergei Lebedev ◽  
Susana Custódio ◽  
...  

<p>Cape Verde is an intraplate archipelago located in the Atlantic Ocean about 560 km west of Senegal, on top of a ~130 Ma sector of the African oceanic lithosphere. Until recently, due to the lack of broadband seismic stations, the upper-mantle structure beneath the islands was poorly known. In this study we used data from two temporary deployments across the archipelago, measuring the phase velocities of Rayleigh-waves fundamental-modes in a broad period range (8–250 s), by cross-correlating teleseismic earthquake data between pairs of stations. Deriving a robust average, phase-velocity curve for the Cape Verde region, we inverted it for a shear-wave velocity profile using non-linear gradient search.</p><p>Our results show anomalously low velocities of ∼4.2 km/s in the asthenosphere, indicating the presence of high temperatures and, eventually, partial melting. This temperature anomaly is probably responsible for the thermal rejuvenation of the oceanic lithosphere to an age as young as about 30 Ma, which we inferred from the comparison of seismic velocities beneath Cape Verde and the ones representing different ages in the Central Atlantic.</p><p>The present results, together with previously detected low-velocity anomalies in the lower mantle and relatively He-unradiogenic isotopic ratios, also suggest a hot plume deeply rooted in the lower mantle, as the origin of the Cape Verde hotspot.</p><p><span>The author</span><span>s</span><span> would like to acknowledge the financial support FCT through project</span> <span>UIDB/50019/2020</span> <span>– IDL</span><span> and FIRE project Ref. PTDC/GEO- GEO/1123/2014.</span></p>


Author(s):  
Aida Farough ◽  
Alexander Karrasch

Understanding the physical properties of ultramafic rocks is important for evaluating awide variety of petrologic models of the oceanic lithosphere, particularly upper mantle and lower crust. Hydration of oceanic peridotites results in increasing serpentine content, which affects lithospheric physical properties and the global bio/geochemical cycles of various elements. In understanding tectonic, magmatic and metamorphic history of the oceanic crust, interpreting seismic velocities, rock composition and elastic moduli are of fundamental importance. In this study we show that as serpentine content increases, density decreases linearly with a slope of 7.85. We also correlate increase in serpentine content with a linear decline in shear, bulk and Young’s moduli with slopes of 0.48, 0.77, 0.45 respectively. Our results show that increase in serpentine content of lower crust and forearc mantle could decrease elasticity of lithospehere and result in break-offs. Therefore tectonic processes at peridotite rich slow spreading ridges may be strongly affected by serpentine content, particularly serpentinization may be responsible for discontinuities in thin crust, and formation of weak fault zones.


2013 ◽  
Vol 10 (7) ◽  
pp. 10859-10911 ◽  
Author(s):  
I. Kriest ◽  
A. Oschlies

Abstract. Although of substantial importance for marine tracer distributions and eventually global carbon, oxygen, and nitrogen fluxes, the interaction between sinking and remineralization of organic matter, benthic fluxes and burial is not always represented consistently in global biogeochemical models. We here aim to investigate the relationships between these processes with a suite of global biogeochemical models, each simulated over millennia, and compared against observed distributions of pelagic tracers and benthic and pelagic fluxes. We concentrate on the representation of sediment-water interactions in common numerical models, and investigate their potential impact on simulated global sediment-water fluxes and nutrient and oxygen distributions. We find that model configurations with benthic burial simulate global oxygen well over a wide range of possible sinking flux parameterizations, making the model more robust with regard to uncertainties about the remineralization length scale. On a global scale, burial mostly affects oxygen in the meso- to bathypelagic zone. While all model types show an almost identical fit to observed pelagic particle flux, and the same sensitivity to particle sinking speed, comparison to observational estimates of benthic fluxes reveals a more complex pattern and may be influenced by the data distribution and methodology. Still, evaluating model results against observed pelagic and benthic fluxes of organic matter can complement model assessments based on more traditional tracers such as nutrients or oxygen. Based on a combined metric of dissolved tracers and biogeochemical fluxes, we here identify two model descriptions of burial as suitable candidates for further experiments and eventual model refinements.


2021 ◽  
Author(s):  
James C. Ferguson ◽  
Tobias Bolch ◽  
Andreas Vieli

<p>The transient response of debris-covered glaciers to a changing climate is governed by nonlinear feedbacks between ice dynamics, debris transport, and glacier geometry and that act over a wide range of temporal and spatial scales. Current numerical models that are able to accurately represent the relevant physical processes are computationally expensive since they must track the debris transport not only at the glacier surface but also englacially. This makes such models difficult to use for simulations at the regional to global scale.</p><p>In order to address this challenge, we developed a fully coupled numerical model that solves both englacial debris transport and ice flow and includes the effect of debris cover on surface ablation. We use this model to evaluate different simplified approaches to modelling debris-covered glaciers. These simplifications include parametrized 1-D debris transport models, parametrized models of surface mass balance that include debris cover effects, and zero-dimensional models. We compare the model performances using a number of tests with an idealized synthetic glacier geometry and a range of forcings, thereby allowing for an evaluation of the relative merits of each approach. A key goal of this work is to provide guidance and tools for modelling studies involving debris cover at the regional to global scale.</p>


2013 ◽  
Vol 10 (12) ◽  
pp. 8401-8422 ◽  
Author(s):  
I. Kriest ◽  
A. Oschlies

Abstract. Although of substantial importance for marine tracer distributions and eventually global carbon, oxygen, and nitrogen fluxes, the interaction between sinking and remineralization of organic matter, benthic fluxes and burial is not always represented consistently in global biogeochemical models. We here aim to investigate the relationships between these processes with a suite of global biogeochemical models, each simulated over millennia, and compared against observed distributions of pelagic tracers and benthic and pelagic fluxes. We concentrate on the representation of sediment–water interactions in common numerical models, and investigate their potential impact on simulated global sediment–water fluxes and nutrient and oxygen distributions. We find that model configurations with benthic burial simulate global oxygen well over a wide range of possible sinking flux parameterizations, making the model more robust with regard to uncertainties about the remineralization length scale. On a global scale, burial mostly affects oxygen in the meso- to bathypelagic zone. While all model types show an almost identical fit to observed pelagic particle flux, and the same sensitivity to particle sinking speed, comparison to observational estimates of benthic fluxes reveals a more complex pattern, but definite interpretation is not straightforward because of heterogeneous data distribution and methodology. Still, evaluating model results against observed pelagic and benthic fluxes of organic matter can complement model assessments based on more traditional tracers such as nutrients or oxygen. Based on a combined metric of dissolved tracers and biogeochemical fluxes, we here identify two model descriptions of burial as suitable candidates for further experiments and eventual model refinements.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 494
Author(s):  
Aida Farough ◽  
Alexander K. Karrasch

Understanding the physical properties of ultramafic rocks is important for evaluating a wide variety of petrologic models of the oceanic lithosphere, particularly upper mantle and lower crust. Hydration of oceanic peridotites results in increasing serpentine content, which affects lithospheric physical properties and the global bio/geochemical cycles of various elements. In understanding tectonic, magmatic, and metamorphic history of the oceanic crust, interpreting seismic velocities, rock composition, and elastic moduli are of fundamental importance. In this study, we show that as serpentine content increases, density decreases linearly with a slope of 7.85. Porosity of the samples does not show any systematic correlation with serpentine content, as it is more strongly affected by local weathering and erosional processes. We also correlate increase in serpentine content with a linear decline in shear, bulk, and Young’s moduli with slopes of 0.48, 0.77, and 0.45, respectively. Our results show that increase in serpentine content of mantle wedge and forearc mantle contributes to their brittle behavior and result in break-offs, obduction, and overthrusting. Therefore, serpentine content strongly affects tectonic processes at subduction zones, particularly serpentinization may be responsible for formation of weak fault zones. Also, serpentinization of fresh oceanic peridotite in slow and ultra-slow spreading ridges may be responsible for observed discontinuities in thin crust.


Sign in / Sign up

Export Citation Format

Share Document