scholarly journals Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis

2002 ◽  
Vol 14 (3) ◽  
pp. 521-536 ◽  
Author(s):  
MARK H. JOHNSON ◽  
HANIFE HALIT ◽  
SARAH J. GRICE ◽  
ANNETTE KARMILOFF–SMITH

To date, research involving functional neuroimaging of typical and atypical development has depended on several assumptions about the postnatal maturation of the brain. We consider evidence from multiple levels of analysis that brings into question these underlying assumptions and advance an alternative view. This alternative view, based on an “interactive specialization” approach to postnatal brain development, indicates that there is a need to: obtain data from early in development; focus more on differences in interregional interactions rather than searching for localized, discrete lesions; examine the temporal dynamics of neural processing; and move away from deficits to image tasks in which atypical participants perform as well as typically developing participants.

2021 ◽  
Author(s):  
Ana M.G. Manea ◽  
Anna Zilverstand ◽  
Kamil Ugurbil ◽  
Sarah R. Heilbronner ◽  
Jan Zimmermann

Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole-brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultra-high field fMRI to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we were not only able to demonstrate that we can replicate existing electrophysiological hierarchies, but we extended these to whole brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Second, with those results in hand, we were able to show that one facet of the high-dimensional FC topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match functional connectivity gradient topographies across the whole brain. We conclude that intrinsic timescales are an unifying organizational principle of neural processing across the whole brain.


2021 ◽  
pp. 1-11
Author(s):  
Peter Wilson ◽  
Clara Humpston ◽  
Rajan Nathan

SUMMARY Significant developments in schizophrenia psychopathology are ready to be incorporated into clinical practice. These advances allow a way forward through the well-described challenges experienced with current diagnostic and psychopathological frameworks. This article discusses approaches that will enable clinicians to access a wider and richer spectrum of patient experience; describes process-based models of schizophrenia in the domains of both the brain and the mind; and considers how different levels of analysis might be linked via the predictive processing framework. Multiple levels of analysis provide different targets for varying modalities of treatment – dopamine blockade at the molecular level, psychological therapy at the level of the mind, and social interventions at the personal level. Psychiatry needs to align itself closer to neuroscientific research. It should move from a symptom-based understanding to a model based on process. That is – after having asked about a patient's symptoms and experience clinicians need to introduce steps involving a consideration of what might be the brain and mind processes underlying the experience.


Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.


Author(s):  
Riitta Salmelin ◽  
Jan Kujala ◽  
Mia Liljeström

When seeking to uncover the brain correlates of language processing, timing and location are of the essence. Magnetoencephalography (MEG) offers them both, with the highest sensitivity to cortical activity. MEG has shown its worth in revealing cortical dynamics of reading, speech perception, and speech production in adults and children, in unimpaired language processing as well as developmental and acquired language disorders. The MEG signals, once recorded, provide an extensive selection of measures for examination of neural processing. Like all other neuroimaging tools, MEG has its own strengths and limitations of which the user should be aware in order to make the best possible use of this powerful method and to generate meaningful and reliable scientific data. This chapter reviews MEG methodology and how MEG has been used to study the cortical dynamics of language.


2019 ◽  
Vol 121 (5) ◽  
pp. 1588-1590 ◽  
Author(s):  
Luca Casartelli

Neural, oscillatory, and computational counterparts of multisensory processing remain a crucial challenge for neuroscientists. Converging evidence underlines a certain efficiency in balancing stability and flexibility of sensory sampling, supporting the general idea that multiple parallel and hierarchically organized processing stages in the brain contribute to our understanding of the (sensory/perceptual) world. Intriguingly, how temporal dynamics impact and modulate multisensory processes in our brain can be investigated benefiting from studies on perceptual illusions.


Author(s):  
Mark A Thornton ◽  
Diana I Tamir

Abstract The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.


Sign in / Sign up

Export Citation Format

Share Document