Melt fracture revisited

2001 ◽  
Vol 12 (4) ◽  
pp. 465-477
Author(s):  
J. M. GREENBERG

In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note, a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no-slip boundary conditions at the capillary wall. In simple shear the shear stress τ and strain rate d are assumed to be related by d = Fτ, where F ranges between F2 and F1 > F2. A strain-rate dependent yield function is introduced and this function governs whether F evolves towards F2 or F1. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears, and explains both the melt fracture and shark skin phenomena.

2015 ◽  
Vol 799-800 ◽  
pp. 774-777
Author(s):  
Cong Ping Chen ◽  
Xiao Yun Wang ◽  
Jie Guang Huang

In micro-scale flow condition, the flow rate and fluid extrusion expansibility are always affected by the wall slip between the fluid and tube wall. In this research, a wall slip model based on a micro-tube flow was developed, and then the wall slip effect on the viscous fluid micro-extrusion process was explored by computational fluid dynamics (CFD) with different extruding pressures. The results showed that wall slip make the fluid resistance and expansibility decrease, and the fluid mass flow rate increase.


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


2021 ◽  
Author(s):  
J. Kim ◽  
W. Gillman ◽  
T. John ◽  
S. Adhikari ◽  
D. Wu ◽  
...  

Abstract This paper analyzes the dynamics of unstable azimuthal thermoacoustic modes in a lean premixed combustor. Azimuthal modes can be decomposed into two counter rotating waves where they can either compete and potentially suppress one of them (spinning) or coexist (standing), depending on the operating conditions. This paper describes experimental results of the dynamical behaviors of these two waves. The experimental data were taken at different mass flow rates as well as different azimuthal fuel staging in a multi-nozzle can combustor. It is shown that at a low flow rate with uniform fuel distribution, the two waves have similar amplitudes, giving rise to a standing wave. However, the two amplitudes are slowly oscillating out of phase to each other, and the phase difference between the two waves also shows oscillatory behavior. For an intermediate flow rate, the dynamics show intermittency between standing and spinning waves, indicating that the system is bistable. In addition, the phase difference dramatically shifts when the mode switches between standing and spinning waves. For a high flow rate, the system stabilizes at a spinning wave most of the time. These experimental observations demonstrate that not only the amplitudes of two waves but also the phase difference plays an important role in the dynamics of azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibit only an oscillatory standing wave behavior regardless of the mass flow rate. Compared to the uniform fuel staging, however, the pressure magnitude is considerably reduced, which provides a potential strategy to mitigate and/or suppress the instabilities.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Samuel Irvine ◽  
Luke Fullard

In this work, we examine the effect of wall slip for a gravity-driven flow of a Newtonian fluid in a partially filled circular pipe. An analytical solution is available for the no-slip case, while a numerical method is used for the case of flow with wall slip. We note that the partially filled circular pipe flow contains a free surface. The solution to the Navier–Stokes equations in such a case is a symmetry of a pipe flow (with no free surface) with the free surface as the symmetry plane. Therefore, we note that the analytical solution for the partially filled case is also the exact solution for fully filled lens and figure 8 shaped pipes, depending on the fill level. We find that the presence of wall slip increases the optimal fill height for maximum volumetric flow rate, brings the “velocity dip” closer to the free surface, and increases the overall flow rate for any fill. The applications of the work are twofold; the analytical solution may be used to verify numerical schemes for flows with a free surface in partially filled circular pipes, or for pipe flows in lens and figure 8 shaped pipes. Second, the work suggests that flows in pipes, particularly shallow filled pipes, can be greatly enhanced in the presence of wall slip, and optimal fill levels must account for the slip phenomenon when present.


Author(s):  
Nikoo Ghahramani ◽  
Shiling Zhang ◽  
Krishnan Iyer ◽  
Antonios K. Doufas ◽  
Savvas G. Hatzikiriakos

2003 ◽  
Vol 125 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Akihiko Hirano ◽  
Michiyoshi Yamamoto ◽  
Katsumi Sakaguchi ◽  
Tetsuo Shoji ◽  
Kunihiro Iida

The flow rate of water flowing on a steel surface is considered to be one of the important factors strongly influencing the fatigue life of the steel, because the water flow produces difference in the local environmental conditions. The effect of the water flow rate on the fatigue life of a carbon steel was thus investigated experimentally. Fatigue testing of the carbon steel was performed at 289°C for various dissolved oxygen contents (DO) of less than 0.01 and 0.05, 0.2, and 1 ppm, and at various water flow rates. Three different strain rates of 0.4, 0.01, and 0.001 %/s were used in the fatigue tests. At the strain rate of 0.4 %/s, no significant difference in fatigue life was observed under the various flow rate conditions. On the other hand, at 0.01 %/s, the fatigue life increased with increasing water flow rate under all DO conditions, such that the fatigue life at a 7 m/s flow rate was about three times longer than that at a 0.3 m/s flow rate. This increase in fatigue life is attributed to increases in the crack initiation life and small-crack propagation life. The major mechanism producing these increases is considered to be the flushing effect on locally corrosive environments at the surface of the metal and in the cracks. At the strain rate of 0.001 %/s, the environmental effect seems to be diminished at flow rates higher than 0.1 m/s. This behavior does not seem to be explained by the flushing effect alone. Based on this experimental evidence, it was concluded that the existing fatigue data obtained for carbon steel under stagnant or relatively low flow rate conditions may provide a conservative basis for fatigue life evaluation. This approach seems useful for characterizing fatigue life evaluation by expressing increasing fatigue life in terms of increasing water flow rate.


Sign in / Sign up

Export Citation Format

Share Document