scholarly journals Stable spike clusters for the one-dimensional Gierer–Meinhardt system

2016 ◽  
Vol 28 (4) ◽  
pp. 576-635 ◽  
Author(s):  
JUNCHENG WEI ◽  
MATTHIAS WINTER

We consider the Gierer–Meinhardt system with precursor inhomogeneity and two small diffusivities in an interval $$\begin{equation*} \left\{ \begin{array}{ll} A_t=\epsilon^2 A''- \mu(x) A+\frac{A^2}{H}, &x\in(-1, 1),\,t>0,\\[3mm] \tau H_t=D H'' -H+ A^2, & x\in (-1, 1),\,t>0,\\[3mm] A' (-1)= A' (1)= H' (-1) = H' (1) =0, \end{array} \right. \end{equation*}$$$$\begin{equation*}\mbox{where } \quad 0<\epsilon \ll\sqrt{D}\ll 1, \quad \end{equation*}$$$$\begin{equation*} \tau\geq 0 \mbox{ and $\tau$ is independent of $\epsilon$. } \end{equation*}$$ A spike cluster is the combination of several spikes which all approach the same point in the singular limit. We rigorously prove the existence of a steady-state spike cluster consisting of N spikes near a non-degenerate local minimum point t0 of the smooth positive inhomogeneity μ(x), i.e. we assume that μ′(t0) = 0, μ″(t0) > 0 and we have μ(t0) > 0. Here, N is an arbitrary positive integer. Further, we show that this solution is linearly stable. We explicitly compute all eigenvalues, both large (of order O(1)) and small (of order o(1)). The main features of studying the Gierer–Meinhardt system in this setting are as follows: (i) it is biologically relevant since it models a hierarchical process (pattern formation of small-scale structures induced by a pre-existing large-scale inhomogeneity); (ii) it contains three different spatial scales two of which are small: the O(1) scale of the precursor inhomogeneity μ(x), the $O(\sqrt{D})$ scale of the inhibitor diffusivity and the O(ε) scale of the activator diffusivity; (iii) the expressions can be made explicit and often have a particularly simple form.

2021 ◽  
Vol 102 (2) ◽  
pp. 56-67
Author(s):  
A.Zh. Turmukhambetov ◽  
◽  
S.B. Otegenova ◽  
K.A. Aitmanova ◽  

The paper analyzes the results of a theoretical study of quasi-two-dimensional turbulence, two-dimensional equations of motion of which contain additional terms. The regularities of the dynamic interaction of vortex structures in shear turbulent flows of a viscous liquid are established. Based on the model of quasi-twodimensional turbulence, numerical values of the spatial scales of intermittency are determined as an alternation of large-scale and small-scale pulsations of dynamic characteristics. The experimentally observed alternation of vortex structures and the idea of their self-organization form the basis of the assumption of the existence of a geometric parameter determined by the size of the vortex core and the distance between their centers. Therefore, the main attention is paid to the theoretical calculation of the minimum spatial scales of the intermittency of vortex clusters. As a simplification, the vortex pairs are located in a reference frame, relative to which the centers of the vortices are stationary. Thus, the kinematic effect of the transfer of one vortex into the field of another is excluded from consideration. The symmetric and unsymmetric interactions of vortices, taking into account the one-sided and opposite directions of their rotation, are considered as realizable cases. A successful attempt is made to study the influence of the internal structure of vortex clusters on the numerical values of the minimum intermittency scales. The obtained results are satisfactorily confirmed by known theoretical and experimental data. Consequently, they can be used in all practical applications, without exception, where the structure of turbulence is taken into account, as well as for improving and expanding existing semi-empirical theories.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2269-2282
Author(s):  
D Mester ◽  
Y Ronin ◽  
D Minkov ◽  
E Nevo ◽  
A Korol

Abstract This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the basis of pairwise recombination frequencies. The quality of derived maps under various complications (dominant vs. codominant markers, marker misclassification, negative and positive interference, and missing data) was analyzed using simulated data with ∼50-400 markers. High performance of the employed algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1 with 230 markers) is provided to illustrate the proposed methodology.


2015 ◽  
Vol 112 (19) ◽  
pp. 6236-6241 ◽  
Author(s):  
Thomas M. Neeson ◽  
Michael C. Ferris ◽  
Matthew W. Diebel ◽  
Patrick J. Doran ◽  
Jesse R. O’Hanley ◽  
...  

In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.


2008 ◽  
Vol 38 (5) ◽  
pp. 1260-1266 ◽  
Author(s):  
Erik A. Lilleskov ◽  
Philip M. Wargo ◽  
Kristiina A. Vogt ◽  
Daniel J. Vogt

Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the vitality of red spruce fine roots over a regional acid and N deposition gradient in the northeastern USA. We used root N as an indicator of stand N availability and examined its relationship with the abundance of ectomycorrhizal morphotypes. The dominant morphotypes changed in relative abundance as a function of stand N availability. As root N concentrations increased, Piloderma spp. - like, Cenococcum geophilum Fr., and other unidentified mycorrhizal morphotypes declined in abundance, while other smooth-mantled morphotypes increased. Root N concentration in the 1–2 mm diameter class was the best predictor of the abundance of multiple morphotypes. The morphotype responses were consistent with those found in experimental and small-scale studies, suggesting that N availability is altering ectomycorrhizal communities over broad spatial scales in this region. This finding provides an impetus to conduct a more detailed characterization of mycorrhizal community responses to N deposition across large-scale gradients.


2018 ◽  
Vol 32 (2) ◽  
pp. 101-120 ◽  
Author(s):  
Zoltán Boldizsár Simon

Today’s technological-scientific prospect of posthumanity simultaneously evokes and defies historical understanding. On the one hand, it implies a historical claim of an epochal transformation concerning posthumanity as a new era. On the other, by postulating the birth of a novel, better-than-human subject for this new era, it eliminates the human subject of modern Western historical understanding. In this article, I attempt to understand posthumanity as measured against the story of humanity as the story of history itself. I examine the fate of humanity as the central subject of history in three consecutive steps: first, by exploring how classical philosophies of history achieved the integrity of the greatest historical narrative of history itself through the very invention of humanity as its subject; second, by recounting how this central subject came under heavy criticism by postcolonial and gender studies in the last half-century, targeting the universalism of the story of humanity as the greatest historical narrative of history; and third, by conceptualizing the challenge of posthumanity against both the story of humanity and its criticism. Whereas criticism fragmented history but retained the possibility of smaller-scale narratives, posthumanity does not doubt the feasibility of the story of humanity. Instead, it necessarily invokes humanity, if only in order to be able to claim its supersession by a better-than-human subject. In that, it represents a fundamental challenge to the modern Western historical condition and the very possibility of historical narratives – small-scale or large-scale, fragmented or universal.


2021 ◽  
Author(s):  
Ofer Shamir ◽  
Chen Schwartz ◽  
Chaim Garfinkel ◽  
Nathan Paldor

&lt;p&gt;A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, by adding a small-scale (stochastic) forcing, we find that the parity distribution of the tropical spectrum is sensitive to asymmetries on small spatial scales compared to the observed large-scale spectrum. Physically, such forcing can be thought of as small-scale convection, which is believed to trigger some of the Tropics' large-scale features via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any small-scale asymmetry (symmetric or anti-symmetric) in the forcing leads to symmetric bias in the spectrum, regardless of the source of variability providing the forcing.&lt;/p&gt;


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


2019 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Jiake Li ◽  
Cong Mu ◽  
Chenning Deng ◽  
Menghua Ma

Abstract The storm water management models were established at three spatial scales (large, medium, and small) based on a sponge city pilot area in China to explore the hydrological and environmental effects of rainfall conditions and development modes. Results showed the following. (1) Total runoff reduction rates increased from 26.7% to 53.9% for the rainfall event of a 2-year recurrence period as the scale increased. For 5-year and above recurrence periods, total runoff reduction rates were 19.5–49.4%. These rates increased from the small to medium scale and slightly decreased from the medium to large scale. (2) The runoff coefficients were 0.87–0.29, which decreased from the small to medium scale and were basically constant from the medium to large scale. (3) The peak flow reduction rates decreased with increased recurrence periods. The rates increased initially and then decreased at the small scale, whereas the opposite trend occurred at the medium scale. (4) The reduction rates of pollutants were negatively correlated with recurrence periods under the three spatial scales. The pollution load reduction rates were 19.5–54.7%, which increased from the small to medium scale and were basically constant from the medium to large scale.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


Sign in / Sign up

Export Citation Format

Share Document