scholarly journals Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage

Zygote ◽  
1994 ◽  
Vol 2 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Asangla Ao ◽  
Robert P. Erickson ◽  
Robert M.L. Winston ◽  
Alan H Handysude

SummaryGlobal activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.

2019 ◽  
Vol 25 (7) ◽  
pp. 397-407
Author(s):  
Yvonne Wilson ◽  
Ian D Morris ◽  
Susan J Kimber ◽  
Daniel R Brison

Abstract Apoptosis occurs primarily in the blastocyst inner cell mass, cells of which go on to form the foetus. Apoptosis is likely to play a role in ensuring the genetic integrity of the foetus, yet little is known about its regulation. In this study, the role of the mouse gene, transformation-related protein 53 (Trp53) in the response of embryos to in vitro culture and environmentally induced DNA damage was investigated using embryos from a Trp53 knockout mouse model. In vivo-derived blastocysts were compared to control embryos X-irradiated at the two-cell stage and cultured to Day 5. An analysis of DNA by comet assay demonstrated that 1.5 Gy X-irradiation directly induced damage in cultured two-cell mouse embryos; this was correlated with retarded development to blastocyst stage and increased apoptosis at the blastocyst stage but not prior to this. Trp53 null embryos developed to blastocysts at a higher frequency and with higher cell numbers than wild-type embryos. Trp53 also mediates apoptosis in conditions of low levels of DNA damage, in vivo or in vitro in the absence of irradiation. However, following DNA damage induced by X-irradiation, apoptosis is induced by Trp53 independent as well as dependent mechanisms. These data suggest that Trp53 and apoptosis play important roles in normal mouse embryonic development both in vitro and in vivo and in response to DNA damage. Therefore, clinical ART practices that alter apoptosis in human embryos and/or select embryos for transfer, which potentially lack a functional Trp53 gene, need to be carefully considered.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Tereza Toralová ◽  
Veronika Benešová ◽  
Kateřina Vodičková Kepková ◽  
Petr Vodička ◽  
Andrej Šušor ◽  
...  

This study was conducted to investigate the effect of silencing nucleophosmin in the development of in vitro-produced bovine embryos. Nucleophosmin is an abundant multifunctional nucleolar phosphoprotein that participates, for example, in ribosome biogenesis or centrosome duplication control. We showed that although the transcription of embryonic nucleophosmin started already at late eight-cell stage, maternal protein was stored throughout the whole preimplantation development and was sufficient for the progression to the blastocyst stage. At the beginning of embryogenesis, translation occurs on maternally derived ribosomes, the functionally active nucleoli emerge during the fourth cell cycle in bovines. We found that nucleophosmin localisation reflected the nucleolar formation during bovine preimplantation development. The protein was detectable from the beginning of embryonic development. Before embryonic genome activation, it was dispersed throughout the nucleoplasm. The typical nucleolar localisation emerged with the formation of active nucleoli. At the blastocyst stage, nucleophosmin tended to localise especially to the trophectoderm. To see for how long is maternal nucleophosmin preserved, we silenced the nucleophosmin mRNA using RNA interference approach. Although a large portion of nucleophosmin was degraded in embryos with silenced nucleophosmin mRNA, an amount sufficient for normal development was preserved and we detected only a temporal delay in nucleophosmin relocalisation to nucleoli. Moreover, we observed no defects in nuclear shape or cytoskeleton previously found in somatic cells and only a non-significant decrease in embryonic developmental competence. Thus, our results show that the preserved amount of maternal nucleophosmin is sufficient for preimplantation development of bovine embryo.


2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.


2008 ◽  
Vol 20 (1) ◽  
pp. 176
Author(s):  
D. X. Zhang ◽  
X. H. Shen ◽  
X. S. Cui ◽  
N.-H. Kim

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNA molecules that can regulate gene expression by base-pairing with fully or partially sequence-complementary target mRNAs. Hundreds of miRNAs have been identified in various multicellular organisms and many miRNAs are evolutionarily conserved. While miRNAs play an important role in animal development, little is known about their biological function during early mammalian development. In order to obtain insight into the role of miRNAs in early embryogenesis, we first determined the expression levels of three apoptosis-related miRNAs, miR-15a, -16, and -21 in mouse preimplantation embryos using TaqMan� MicroRNA Assays. Five embryos of each developmental stage were snap-frozen and amplified by stem-loop RT primer and TaqMan Universal PCR Master Mix (Applied Biosystems Inc., Foster City, CA, USA). The miRNA concentrations (10–X) in embryo samples were calculated by standard curve from synthetic lin-4 miRNA and the absolute copy number per embryo was obtained based on the formula of 6.02 � 10(8–X). All three miRNAs had low expression levels from the zygote to the 8-cell stage and were up-regulated thereafter. In general, among the three miRNAs, miR-15a exhibited the lowest expression in preimplantation embryos, while miR-16 exhibited the highest. Because of the low levels of miRNA-15a, we determined developmental ability and apoptosis of embryos following microinjection of miRNA-15a. The microinjection of miR-15a into zygotes did not affect embryo development up to the blastocyst stage (miR-15a, 90 � 4.5% v. buffer 94.6 � 5.8%); however, it did induce a significant degree of apoptosis (P < 0.05; Tukey's multiple range test). Furthermore, the expression levels of miR-15a and -16 were increased in microinjected blastocysts compared to the control group (copy number per blastocyst, miR-15a, 6991 � 1223 v. 3098 � 592; miR-16, 196216 � 958 v. 133514 � 6059). Real-time RT-PCR data showed that the gene expression levels of the housekeeping gene GAPDH, the anti-apoptotic gene Bcl-xL, and the miRNA pathway-related genes GW182 and Dicer remained unchanged in miR-15a-injected blastocysts compared to the control group. In contrast, the expression of the stem cell-specific transcriptional factor Oct-4 (fold change, 1.451 � 0.12), the pro-apoptotic gene Bax (1.418 � 0.12), and Caspase 3 (1.314 � 0.19) were significantly increased in microinjected blastocysts. In addition, treatment of 2-cell embryos with 600 µm H2O2 induced apoptosis and increased the expression level of miR-16 at the blastocyst stage (P < 0.05). Taken together, the changes in the expression levels of miR-15a, -16, and -21 in various embryonic developmental stages indicate a possible role for them in early embryogenesis. Furthermore, the high expression levels of miR-15a and miR-16 seem to be linked to apoptosis in blastocyst-stage embryos; this may be due to an increase in the expression of pro-apoptotic genes.


2018 ◽  
Vol 30 (3) ◽  
pp. 546 ◽  
Author(s):  
Debra K. Berg ◽  
Peter L. Pfeffer

We profiled 98 mature microRNAs (miRNAs) using a stem-loop reverse transcription polymerase chain reaction assay array based on human miRNAs. We demonstrated that one, but not two, base-pair changes in the miRNA recognition sequence at the 3′ end only marginally affected copy number estimates. Absolute levels of miRNAs were measured in matured cattle oocytes, eight-cell embryos and normal and parthenogenetic blastocysts and Day-14 trophoblast. Most miRNA concentrations were below the expected functional threshold required for effective repression of moderately to highly abundant target RNA. In oocytes and peri-embryonic genome activation embryos, miRNA 320, a member of the Dgcr8/Drosha-independent class of miRNAs, was expressed at greater than 1000 copies per embryo. miRNAs were more abundant at the eight-cell than the oocyte stage. miRNA concentrations per cell increased from the eight-cell to the blastocyst stage. Both the number of miRNA species and their expression levels were reduced in trophoblast tissue at Day 14. The parthenogenetic samples were more related in their miRNA expression profiles to each other than to their wild-type (in vitro-produced cultured) counterparts. miRNAs 299 and 323, which have been shown to be maternally expressed in other species, were also more than 4-fold overexpressed in the cattle parthenogenetic samples.


1998 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Paula A. Almeida ◽  
Virginia N. Bolton

The relationship between chromosomal abnormalities in the human preimplantation embryo and developmental arrest in vitro was investigated. Cytogenetic analysis of 171 embryos that had arrested between the pronucleate and the 8-cell stages demonstrated that the overall incidence of chromosomal abnormality among these embryos was 63.4%. Of the embryos that arrested at the pronucleate stage (n = 48), 47.9% were chromosomally abnormal, compared with 59.5% of those that arrested between the 2- and 4-cell stages (n = 50), and 82.8% of those arrested between the 5- and 8-cell stage (n = 73). The rate of abnormality in embryos with poor morphology (irregular shaped blastomeres and considerable extracellular fragmentation) was significantly higher (86.8%; n = 33) than those with good morphology (60%; n = 51; P<0.005). These results suggest that there is an association between chromosomal abnormality, developmental arrest in vitro, and poor morphology.


2012 ◽  
Vol 56 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Ján Bystriansky ◽  
Ján Burkuš ◽  
Štefan Juhás ◽  
Dušan Fabian ◽  
Juraj Koppel

Abstract High plasma urea nitrogen concentration has been proposed as an important factor contributing to the decline in reproductive parameters of domestic animals. The aim of this study was to evaluate the effect of urea on the development of preimplantation embryos in a mouse model. During in vivo tests, acute renal failure (ARF) accompanied by hyper-uraemia was induced by intramuscular administration of glycerol (50%) into hind limbs of fertilised dams. During in vitro tests, embryos collected from healthy dams were cultured in a medium with the addition of various concentrations of urea from the 4-cell stage to the blastocyst stage. Stereomicroscopic evaluation and fluorescence staining of embryos obtained from dams with ARF showed that high blood urea is connected with an increase in the number blastocysts containing at least one apoptotic cell and in the incidences of dead cells per blastocyst, but it did not affect their ability to reach the blastocyst stage. In vitro tests showed that culture of embryos with urea at concentration of 10 mM negatively affected the quality of obtained blastocysts. Blastocysts showed significantly lower numbers of cells and increased incidence of dead cells. An increase in apoptosis incidence was observed even in blastocysts obtained from cultures with 5 mM urea. Urea at concentrations 50 mM and higher negatively affected the ability of embryos to reach the blastocyst stage and the highest used concentrations (from 500 mM) caused overall developmental arrest of embryos at the 4- or 5- cell stage. These results show that elevated levels of urea may cause changes in the microenvironment of developing preimplantation embryos, which can negatively affect their quality. Embryo growth remains un-affected up to very high concentrations of urea.


Development ◽  
1970 ◽  
Vol 23 (3) ◽  
pp. 539-547
Author(s):  
Jacek A. Modliński

Up to the present time the function and significance of the zona pellucida in the development of mammalian eggs has not been fully explained. Zona-free mouse eggs will develop in vitro from the 2-cell stage, or later, up to the blastocyst stage (Tarkowski, 1961; Mintz, 1962; Gwatkin, 1963). Single blastomeres isolated at the 2-cell (Mulnard, 1965), 4- and 8-cell stage (Tarkowski & Wróblewska, 1967) will also develop in vitro up to the blastocyst stage. Similar experiments on development in vitro of 1- and 2-cell rabbit eggs (Edwards, 1964) showed that in this species also cleavage can occur when the zona pellucida is absent, although the blastomeres exhibit a tendency to fall away from each other. Tarkowski's observations (unpublished) would appear to show, however, that naked 1-, 2- and 4-cell mouse eggs do not develop when transferred to the oviduct. A few hours after transplanting the naked eggs none could be recovered by flushing the oviduct, whereas eggs surrounded by zonae which were transplanted simultaneously were recovered.


Zygote ◽  
2003 ◽  
Vol 11 (3) ◽  
pp. 271-283 ◽  
Author(s):  
V. Baran ◽  
D. Fabian ◽  
P. Rehak ◽  
J. Koppel

Apoptosis may occur in early embryos in which the execution of essential developmental events has failed. Thus the initiation of the apoptotic mechanism may be related to activation of the embryonic genome. In this way, developmentally incompetent cells or whole embryos are eliminated. It is likely that some link exists between failed resumption of rRNA synthesis and the incidence of apoptosis in cleaving embryos. In this context, decreased developmental potential in cleaving nucleotransferred embryos is consistent with cell loss, and very likely due to programmed cell death. The effects of apoptosis inducers on cleaving embryos have not been characterised in comparable detail to that in the case of somatic cells. Early embryos provide a very good model for study of these processes because of the specificity of rRNA transcription resumption after fertilization. In our experiments three apoptosis inducers (staurosporin 10 mM, actinomycin D 0.05 mg/ml and camptothecin 0.1 mg/ml) were used in a culture medium for 15 h at the 4-cell stage (day 2) of mouse embryos, followed by further development in a pure culture medium until fixation on days 3, 4 and 5. In staurosporin-induced embryos, light microscopy immunostaining of nucleolar proteins (fibrillarin, Nopp140, protein B23) did not reveal changes in nucleolar morphology on day 3. On days 4 and 5, more compact (roundish) nucleoli (in comparison with controls) were observed. The embryos treated with camptothecin displayed a similar staining pattern to those with staurosporin at each day. In actinomycin-D-treated embryos, marked changes in nucleolar appearance were visible as early as day 3. These changes in nucleolar morphology consisted of loss of the reticulation appearance and fragmentation of nucleoli. In addition to nucleolar changes, significantly decreased cell proliferation was observed. The induced embryos did not reach the blastocyst stage. The number of blastomeres was decreased, and staining with Hoechst 33342 revealed a significant percentage of apoptotic nuclei (condensed/fragmented nuclei) from day 4.


Sign in / Sign up

Export Citation Format

Share Document