Spindle dynamics in living mouse oocytes during meiotic maturation, ageing, cooling and overheating: a study by polarized light microscopy

Zygote ◽  
2004 ◽  
Vol 12 (3) ◽  
pp. 241-249 ◽  
Author(s):  
Xiao-Fang Sun ◽  
Wen-Hong Zhang ◽  
Xin-Jie Chen ◽  
Guo-Hong Xiao ◽  
Wei-Yang Mai ◽  
...  

A liquid crystal polarized light microscope (LC PolScope) was used to examine spindle dynamics in living mouse oocytes. Immature oocytes were cultured for 0–48 h and spindles were imaged with the PolScope at various time points of culture. Oocytes at metaphase I (M-I) and metaphase II (M-II) were also exposed to shifts of temperature from 25 to 41 °C to examine the effects of fluctuations of temperature on spindle dynamics. After examination with the PolScope, some oocytes were fixed and examined by immunocytochemical staining and confocal microscopy. After culturing for 6 h, 76% and 2% of the oocytes reached M-I and M-II stages and all oocytes had birefringent spindles. When the oocytes were cultured for 14–16 h, 88% and 6% of oocytes were at M-II and M-I stages respectively and all oocytes had birefringent spindles. However, when the oocytes were cultured for 22–48 h, the proportions of oocytes with birefringent spindles decreased as culture time was increased. Exposure of oocytes to 25 °C induced spindle disassembly within 10–20 min in both M-I and M-II oocytes. Most (93–100%) oocytes reassembled spindles after warming at 37 °C. Furthermore, exposure of oocytes at M-I stage but not at M-II stage, to 30 °C also induced significant microtubule disassembly. However, exposure of oocytes to 38–41 °C did not obviously change the quantity of microtubules in the spindles, which was measured by retardance. This study indicates that the PolScope can be used to examine spindle dynamics in living oocytes, and it has the advantage over the routine fluorescence microscope in that images can be obtained in the same individual oocyte and the quantity of microtubules can be measured by retardance in living oocytes. These results also indicate that the M-II spindle in mouse oocytes is sensitive to oocyte ageing and cooling, but not heating, and M-I spindle is more sensitive to temperature decline than M-II spindle.

Reproduction ◽  
2000 ◽  
pp. 377-383 ◽  
Author(s):  
L Leonardsen ◽  
A Wiersma ◽  
M Baltsen ◽  
AG Byskov ◽  
CY Andersen

The mitogen-activated protein kinase-dependent and the cAMP-protein kinase A-dependent signal transduction pathways were studied in cultured mouse oocytes during induced and spontaneous meiotic maturation. The role of the mitogen-activated protein kinase pathway was assessed using PD98059, which specifically inhibits mitogen-activated protein kinase 1 and 2 (that is, MEK1 and MEK2), which activates mitogen-activated protein kinase. The cAMP-dependent protein kinase was studied by treating oocytes with the protein kinase A inhibitor rp-cAMP. Inhibition of the mitogen-activated protein kinase pathway by PD98059 (25 micromol l(-1)) selectively inhibited the stimulatory effect on meiotic maturation by FSH and meiosis-activating sterol (that is, 4,4-dimethyl-5alpha-cholest-8,14, 24-triene-3beta-ol) in the presence of 4 mmol hypoxanthine l(-1), whereas spontaneous maturation in the absence of hypoxanthine was unaffected. This finding indicates that different signal transduction mechanisms are involved in induced and spontaneous maturation. The protein kinase A inhibitor rp-cAMP induced meiotic maturation in the presence of 4 mmol hypoxanthine l(-1), an effect that was additive to the maturation-promoting effect of FSH and meiosis-activating sterol, indicating that induced maturation also uses the cAMP-protein kinase A-dependent signal transduction pathway. In conclusion, induced and spontaneous maturation of mouse oocytes appear to use different signal transduction pathways.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Boxuan Gao ◽  
Jeroen Beeckman ◽  
Kristiaan Neyts

We demonstrate a laser beam combiner based on four photo-patterned Pancharatnam–Berry (PB) phase gratings, which is compact and has high diffraction efficiency for incident circularly polarized light. The nematic liquid crystal mixture E7 is used as anisotropic material, and the thickness of the layer is controlled by spacers. The beam combiner can bring two parallel laser beams closer to each other while remaining parallel. This work shows the potential to realize components based on flat optical LC devices.


2021 ◽  
Vol 901 ◽  
pp. 67-72
Author(s):  
Chein Yhirayha ◽  
Sakchai Wittaya-Areekul ◽  
Tasana Pitaksuteepong

Morus alba stem extract possesses several biological activities. However, skin delivery of the extract is limited by the stratum corneum. In this study, lamellar lyotropic liquid crystal (LLC) was investigated for the potential application in the skin delivery of M. alba stem extract. The four formulations were developed and incorporated with M. alba stem extract at 3% w/w. These formulations were stored at room temperature in light-protected containers for 3 months. The optical pattern under polarized light microscope, viscosity and remaining of the extract were determined. The skin penetration enhancing property of the formulations was investigated using excised porcine ear skin model. The results showed that all formulations remained stable after 3-month storage. The two formulations exhibiting good penetration enhancing properties were F3 consisting of PEG-7 glyceryl cocoate/n-Dodecane/Water/extract (55.29/19.40/22.31/3.00 %w/w) and F4 consisting of mixed Surfactant/n-Dodecane/Water/extract (48.50/4.85/43.65/3.00 %w/w). The mixed surfactant composed of PEG-7 glyceryl cocoate/PEG-40 hydrogenated castor oil/Glyceryl oleate (40/33.24/26.76 %w/w). It can be concluded that the lamellar LLC formulations developed in this study can be used as a carrier for delivering of M. alba stem extract. The components of the formulations which play important roles are the oil and the surfactant.


2014 ◽  
Vol 25 (9) ◽  
pp. 1437-1445 ◽  
Author(s):  
James R. LaFountain ◽  
Rudolf Oldenbourg

We use liquid crystal polarized light imaging to record the life histories of single kinetochore (K-) fibers in living crane-fly spermatocytes, from their origins as nascent K-fibers in early prometaphase to their fully matured form at metaphase, just before anaphase onset. Increased image brightness due to increased retardance reveals where microtubules are added during K-fiber formation. Analysis of experimentally generated bipolar spindles with only one centrosome, as well as of regular, bicentrosomal spindles, reveals that microtubule addition occurs at the kinetochore-proximal ends of K-fibers, and added polymer expands poleward, giving rise to the robust K-fibers of metaphase cells. These results are not compatible with a model for K-fiber formation in which microtubules are added to nascent fibers solely by repetitive “search and capture” of centrosomal microtubule plus ends. Our interpretation is that capture of centrosomal microtubules—when deployed—is limited to early stages in establishment of nascent K-fibers, which then mature through kinetochore-driven outgrowth. When kinetochore capture of centrosomal microtubules is not used, the polar ends of K-fibers grow outward from their kinetochores and usually converge to make a centrosome-free pole.


Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 97-103 ◽  
Author(s):  
H.J. Clarke ◽  
J. Rossant ◽  
Y. Masui

Mouse oocytes at metaphase I were treated with puromycin, which caused the chromosomes to become decondensed within an interphase nucleus. When the oocytes were allowed to resume protein synthesis, they returned to metaphase within 8–10 h and neither synthesized DNA nor cleaved, indicating that they had not been parthenogenetically activated by the puromycin treatment. However, when dibutyryl cyclic AMP was added to the medium after protein synthesis resumed, the oocytes remained in interphase. These oocytes maintained in interphase began DNA synthesis beginning 20 h after puromycin withdrawal, even though no activation stimulus had been given to them. After transfer to the oviducts of foster mothers, the oocytes could develop to the blastocyst stage. These results indicate that oocytes whose chromosomes were decondensed by puromycin treatment at metaphase I could begin parthenogenetic development in the absence of an activating stimulus, provided that they were prevented from returning to metaphase. In contrast, when the puromycin-treated oocytes were allowed to return to metaphase, they became developmentally arrested at the end of maturation. This suggests that the mechanism responsible for the developmental arrest of mature oocytes at metaphase II depends on cytoplasmic conditions that cause chromosome condensation to the metaphase state.


2019 ◽  
Vol 43 (1-2) ◽  
pp. 67-77 ◽  
Author(s):  
Adil A Awad ◽  
Al-Ameen Bariz OmarAli ◽  
Ahmed Jasim M Al-Karawi ◽  
Zyad Hussein J Al-Qaisi ◽  
Samer Ghanim Majeed

{1-[4-( n-Alkoxy)]-2-(4’-decyloxy)benzylidene}hydrazines ( n-alkoxy = O(CH2) nH, n = 1–9, 12, 16 or 18), an asymmetrical series of 1,2-disubstituted hydrazines, were prepared in a simple two-step procedure as a part of our continuing work in evaluating hydrophobic azine compounds as photoluminescent liquid crystalline materials. The compounds were characterized spectroscopically and their liquid crystalline behaviour and luminescent properties were evaluated using polarized light optical microscopy, differential scanning calorimetry and X-ray powder diffraction techniques. The studies revealed that all of these compounds are liquid crystalline materials exhibiting photoluminescent properties in the crystalline and liquid crystal states.


Sign in / Sign up

Export Citation Format

Share Document