Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos

Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 485-493 ◽  
Author(s):  
A.F. Pereira ◽  
L.M. Melo ◽  
V.J.F. Freitas ◽  
D.F. Salamone

SummaryIn vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylated (γH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P < 0.05), no differences in the number of γH2AX foci or area were detected among the treatments. γH2AX is detected in bovine preimplantation embryos produced by PA, IVF and SCNT; the amount of DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development.

2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


1996 ◽  
Vol 8 (6) ◽  
pp. 945 ◽  
Author(s):  
RJ Partridge ◽  
HJ Leese

Bovine embryos produced in vitro from the putative zygote stage to the blastocyst stage, and blastocysts freshly flushed from the uterus, were cultured in a physiological mixture of amino acids. Depletion of amino acids from the medium and, in a few cases, their appearance, was measured by high performance liquid chromatography. Amino acids were depleted at widely differing rates. The depletion of amino acids was higher when embryos at later developmental stages were cultured, implying an increase in amino acid requirement with development. Threonine was the only amino acid to be depleted at all stages of development; depletion increased from 0.18 +/- 0.07 pmol embryo-1 h-1 at the putative zygote stage to 1.96 +/- 0.49 pmol embryo-1 h-1 at the blastocyst stage. Glutamine was depleted at the putative zygote stage and the 4-cell stage (0.76 +/- 0.05 and 0.94 +/- 0.10 pmol embryo-1 h-1 respectively), but was not significantly depleted at the later stages. Alanine was the only amino acid that appeared consistently in the medium and its production increased progressively throughout development. Aspartate, glutamate, threonine and lysine were depleted significantly by blastocysts derived both in vitro and in vivo; the embryos in vivo also depleted arginine, phenylalanine, isoleucine and tyrosine. These results indicate that individual amino acids are depleted at different rates by bovine preimplantation embryos and suggest that amino acid requirements change during development.


Zygote ◽  
1994 ◽  
Vol 2 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Asangla Ao ◽  
Robert P. Erickson ◽  
Robert M.L. Winston ◽  
Alan H Handysude

SummaryGlobal activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.


2007 ◽  
Vol 19 (1) ◽  
pp. 191
Author(s):  
K. B. Lee ◽  
A. Bettegowda ◽  
J. J. Ireland ◽  
G. W. Smith

Previous studies from our laboratory have demonstrated a positive association of follistatin mRNA abundance with oocyte competence. Follistatin mRNA is greater in germinal vesicle stage oocytes collected from prepubertal (model of poor oocyte competence) vs. adult animals. Furthermore, follistatin mRNA abundance is also greater in early-cleaving 2-cell bovine embryos (collected prior to the maternal zygotic transition and initiation of significant transcription from the embryonic genome) than their late-cleaving counterparts. Given these results and the fact that early-cleaving embryos develop to the blastocyst stage at a greater rate, we hypothesized that follistatin has a stimulatory role in early embryonic development. To begin to test this hypothesis, we determined the effects of follistatin treatment of in vitro-produced bovine embryos (during the initial 72 h post-fertilization) on time to first cleavage, development to the blastocyst stage (Day 7), and blastocyst cell allocation (quality). Cumulus–oocyte complexes (COCs) were harvested from ovaries obtained from a local abattoir, matured, and fertilized in vitro. After 20 h of co-incubation with spermatozoa, presumptive zygotes were stripped of cumulus cells and cultured in KSOM medium supplemented with 0.3% BSA containing 0, 1, 10, or 100 ng mL-1 follistatin (n = 25 presumptive zygotes per treatment; n = 6 replicates). Proportions of embryos reaching the 2-cell stage within 30 h (early-cleaving), 30–36 h (late-cleaving), and within 48 h post-fertilization (total cleavage rate) were recorded. Embryos at the 8–16-cell stage were separated 72 h after fertilization and cultured in fresh KSOM medium supplemented with 0.3% BSA and 10% FBS until Day 7. The proportion of embryos reaching the blastocyst stage at Day 7 post-fertilization was recorded and the numbers of inner cell mass (ICM) and trophectoderm (TE) cells determined by differential staining. Follistatin treatment did not increase the rate of total cleavage and the proportion of late-cleaving embryos when compared to control. However, supplementation with 1 and 10, but not 100, ng mL-1 follistatin increased the proportion of early-cleaving embryos (26.3 and 35.3% vs. 9.5%) and development to the blastocyst stage (28.6 and 31.7% vs. 18.4%) relative to controls (P &lt; 0.05). Treatment with 10 ng mL-1 follistatin increased total cell numbers (130.1 vs. 110.9) and proportion of trophectoderm cells (61.6% vs. 48.4%) and decreased the ICM/total cell ratio (38.4% vs. 51.5%) in Day 7 blastocysts relative to controls (P &lt; 0.05). The results indicate that exogenous follistatin treatment during the early stages of in vitro bovine embryo development can enhance time to first cleavage, development to the blastocyst stage, and cell allocation in favor of increased trophectoderm cells, and can support a potential functional role for follistatin in early embryogenesis.


2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2010 ◽  
Vol 22 (1) ◽  
pp. 224 ◽  
Author(s):  
C. M. O'Meara ◽  
J. D. Murray ◽  
J. F. Roche ◽  
S. Mamo ◽  
E. Gallagher ◽  
...  

Ribonucleic acid interference (RNAi) has become an effective tool for studying gene function in a variety of cells. The objective of this study was to compare the efficiency of gene silencing when siRNA were introduced into bovine zygotes by microinjection (as done previously; Tesfaye D et al. 2007 Mol. Reprod. Dev. 74, 978-988) v. a novel method of transfection in terms of gene knockdown and embryo development. For microin-jection, in vitro-produced bovine zygotes (16 h post insemination) were randomly assigned to 1 of 3 groups over 2 experiments. In Experiment 1, E-cadherin siRNA was injected at 100 μM (n = 168) and compared with PBS-injected (n = 180) and noninjected controls (n = 152). In Experiment 2, E-cadherin siRNA was injected at 375 μM (n = 154) and compared with PBS-injected (n = 136) and noninjected controls (n = 151). Embryos were subsequently cultured in vitro until Day 7 (day of IVF = Day 0). For transfection, the zona pellucida was removed from in vitro-produced zygotes. Zona-free zygotes were randomly assigned to 1 of 4 groups (i) GAPDH (n = 67), (ii) scrambled (n = 66), (iii) E-cadherin (n = 69) siRNA treatments at 100 nM or (iv) nontransfected controls (n = 66). Zygotes were incubated in transfection medium with siRNA for 1 h at 39°C, cultured individually in the well-of-the-well system to Day 7. The proportion of zygotes undergoing cleavage and developing to the blastocyst stage was recorded, and Day 7 embryos were frozen individually for mRNA analysis. Data for mRNA expression were fitted to a general linear model, and developmental stages were tested using ANOVA. Microinjection of 100 μM E-cadherin siRNA had no effect on phenotype (P > 0.05). Injection of PBS or 375 μM E-cadherin siRNA resulted in a decrease in the number of embryos reaching the 8-cell stage (51.5%, 45.5%, and 62.9%, respectively) and blastocyst stage (39.0%, 32.5%, and 45%, respectively) compared with noninjected controls (P < 0.05). The mRNA abundance of the target gene was suppressed by 36 and 46% when siRNA targeting E-cadherin was injected at 100 μM and 375 μM compared with control and PBS-injected groups (P < 0.05). Transfection with E-cadherin siRNA decreased development of 8-cell embryos (20.3 v. 53.0%, respectively) and blastocysts (7.2 v. 18.2%, respectively) compared with controls (P < 0.05). The mRNA relative abundance was not different between controls (nontransfected, or transfected with GAPDH or scrambled siRNA). However, transfection of zygotes with 100nM E-cadherin siRNA led to a 70% reduction in E-cadherin mRNA relative abundance in Day 7 blastocysts compared with controls (P < 0.05). Zona removal and transfection resulted in decreased embryo development compared with microinjection (P < 0.05). However, transfection yielded more efficient gene silencing of E-cadherin mRNA with reduced embryo development compared with microinjection. This technique of gene silencing could improve the efficiency of gene function studies in early bovine embryogenesis. Supported by Science Foundation Ireland.


2008 ◽  
Vol 20 (1) ◽  
pp. 176
Author(s):  
D. X. Zhang ◽  
X. H. Shen ◽  
X. S. Cui ◽  
N.-H. Kim

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNA molecules that can regulate gene expression by base-pairing with fully or partially sequence-complementary target mRNAs. Hundreds of miRNAs have been identified in various multicellular organisms and many miRNAs are evolutionarily conserved. While miRNAs play an important role in animal development, little is known about their biological function during early mammalian development. In order to obtain insight into the role of miRNAs in early embryogenesis, we first determined the expression levels of three apoptosis-related miRNAs, miR-15a, -16, and -21 in mouse preimplantation embryos using TaqMan� MicroRNA Assays. Five embryos of each developmental stage were snap-frozen and amplified by stem-loop RT primer and TaqMan Universal PCR Master Mix (Applied Biosystems Inc., Foster City, CA, USA). The miRNA concentrations (10–X) in embryo samples were calculated by standard curve from synthetic lin-4 miRNA and the absolute copy number per embryo was obtained based on the formula of 6.02 � 10(8–X). All three miRNAs had low expression levels from the zygote to the 8-cell stage and were up-regulated thereafter. In general, among the three miRNAs, miR-15a exhibited the lowest expression in preimplantation embryos, while miR-16 exhibited the highest. Because of the low levels of miRNA-15a, we determined developmental ability and apoptosis of embryos following microinjection of miRNA-15a. The microinjection of miR-15a into zygotes did not affect embryo development up to the blastocyst stage (miR-15a, 90 � 4.5% v. buffer 94.6 � 5.8%); however, it did induce a significant degree of apoptosis (P < 0.05; Tukey's multiple range test). Furthermore, the expression levels of miR-15a and -16 were increased in microinjected blastocysts compared to the control group (copy number per blastocyst, miR-15a, 6991 � 1223 v. 3098 � 592; miR-16, 196216 � 958 v. 133514 � 6059). Real-time RT-PCR data showed that the gene expression levels of the housekeeping gene GAPDH, the anti-apoptotic gene Bcl-xL, and the miRNA pathway-related genes GW182 and Dicer remained unchanged in miR-15a-injected blastocysts compared to the control group. In contrast, the expression of the stem cell-specific transcriptional factor Oct-4 (fold change, 1.451 � 0.12), the pro-apoptotic gene Bax (1.418 � 0.12), and Caspase 3 (1.314 � 0.19) were significantly increased in microinjected blastocysts. In addition, treatment of 2-cell embryos with 600 µm H2O2 induced apoptosis and increased the expression level of miR-16 at the blastocyst stage (P < 0.05). Taken together, the changes in the expression levels of miR-15a, -16, and -21 in various embryonic developmental stages indicate a possible role for them in early embryogenesis. Furthermore, the high expression levels of miR-15a and miR-16 seem to be linked to apoptosis in blastocyst-stage embryos; this may be due to an increase in the expression of pro-apoptotic genes.


2016 ◽  
Vol 28 (2) ◽  
pp. 179
Author(s):  
M. Hoelker ◽  
D. Salilew-Wondim ◽  
F. Rings ◽  
D. Tesfaye ◽  
K. Schellander

Usually, in vitro-produced bovine embryos are cultured in vitro in static culture systems for 7 to 9 days in media composed according the oviducal fluid although it is well accepted that around Day 4.5–5 the bovine embryo enters the uterine cavity, providing environmental conditions different from the oviduct. Therefore, one has to raise the question whether changing culture media properties after Day 5 of culture could have beneficial effects on early development of bovine embryos. To answer that question, we transferred bovine IVF derived 32-cell stage embryos into the uterine cavity of synchronized recipients. All embryos had been matured and fertilized under routine standard conditions and were cultured in synthetic oviducal fluid supplemented with essential and nonessential amino acids (SOFaa) supplemented with either 0.3% fatty acid free bovine serum albumin (BSAfaf/Uterus) or 10% serum (serum/uterus) at 38.5°C, 5% O2, and 5% CO2 in humidified air prior transfer into the uterine environment, allowing further development to the blastocyst stage within the physiological environment prior recollection at Day 7 by routine uterine flushing followed by comparison with statically in vitro-developed embryos cultured in media supplemented with serum (serum/serum group) or BSAfaf (BSAfaf/BSAfaf group). All in all, a total of 1031 in vitro-derived 32-cell stage embryos were transferred to 21 synchronized Simmental recipient heifers. Of these, a total of 680 embryos (66%) could be recollected at Day 7. Embryos of the serum/serum group reached a higher blastocyst rate compared with embryos of the BSAfaf/BSAfaf group (68% v. 41%; P < 0.05, ANOVA, Tukey test), whereas the developmental rate to the blastocyst stage did not differ after 9 days of in vitro culture, indicating higher developmental kinetics of bovine 32-cell stage embryos when culture media is supplemented with serum. Moreover, embryos of the serum/uterus group reached significantly lower developmental rates to the blastocyst stage until Day 7 compared with embryos of the serum/serum group (12.9% v. 68.4%). Likewise, embryos in the BSAfaf/uterus group reached significantly lower developmental rates to the blastocyst stage until Day 7 compared with embryos in the BSAfaf/BSAfaf group (16.0% v. 40.1%). When allowed to develop for additional 48h in vitro, developmental rates to the blastocyst stage at Day 9 were still higher in BSAfaf/BSAfaf treatment compared with the BSAfaf/uterus treatment (91.4% v. 74.4%) and the serum/serum treatment compared with the serum/uterus treatment (92.5% v. 56.0%). Taken together, the results of our study demonstrate that uterine transfer of bovine 32-cell stage embryos results in reduction of developmental kinetics as well as lower developmental rates compared with embryos statically cultured in vitro. That might indicate, that a considerable proportion of bovine 32-cell stage embryos might not be able to adapt to the uterine environment.


1994 ◽  
Vol 14 (7) ◽  
pp. 4694-4703
Author(s):  
E M Thompson ◽  
E Christians ◽  
M G Stinnakre ◽  
J P Renard

Eukaryotic interphase chromatin is thought to be organized into topologically discrete, independent domains acting as units upon which differential patterns of gene expression are established. Sequences which attach chromatin to in vitro preparations of a nucleoprotein matrix (scaffold attachment regions [SARs]) may act as domain boundaries, but their role remains poorly defined compared with those of other elements such as locus control regions. We have produced mice homozygous for a transgene which is transcribed as early as the activation of the embryonic genome at the two-cell stage and which is expressed ubiquitously in a number of differentiated tissues. Transgenic lines were generated in the presence or absence of flanking SAR sequences, creating an original model which enabled us to examine the effects of these elements at different developmental stages. In the preimplantation mouse embryo, flanking SARs stimulated transgene expression in a copy-dependent manner. In contrast, in the differentiated tissues of newborn and adult mice, no significant SAR-dependent increase in transgene expression was found, correlation with copy number was lost, and position effects were observed. These results suggest a limited capacity of SARs to act as insulating elements but are consistent with a proposed model of SAR-mediated chromatin opening and closing.


Sign in / Sign up

Export Citation Format

Share Document