Sperm-derived factors enhance the in vitro developmental potential of haploid parthenotes

Zygote ◽  
2017 ◽  
Vol 25 (6) ◽  
pp. 697-710 ◽  
Author(s):  
Ramya Nair ◽  
Shahin Aboobacker ◽  
Srinivas Mutalik ◽  
Guruprasad Kalthur ◽  
Satish Kumar Adiga

SummaryParthenotes are characterized by poor in vitro developmental potential either due to the ploidy status or the absence of paternal factors. In the present study, we demonstrate the beneficial role of sperm-derived factors (SDF) on the in vitro development of mouse parthenotes. Mature (MII) oocytes collected from superovulated Swiss albino mice were activated using strontium chloride (SrCl2) in the presence or absence of various concentrations of SDF in M16 medium. The presence of SDF in activation medium did not have any significant influence on the activation rate. However, a significant increase in the developmental potential of the embryos and increased blastocyst rate (P < 0.01) was observed at 50 µg/ml concentration. Furthermore, the activated oocytes from this group exhibited early cleavage and cortical distribution of cortical granules that was similar to that of normally fertilized zygotes. Culturing 2-cell stage parthenotes in the presence of SDF significantly improved the developmental potential (P < 0.05) indicating that they also play a significant role in embryo development. In conclusion, artificial activation of oocytes with SDF can improve the developmental potential of parthenotes in vitro.

Reproduction ◽  
2009 ◽  
Vol 137 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Jun-Zuo Wang ◽  
Hong-Shu Sui ◽  
De-Qiang Miao ◽  
Na Liu ◽  
Ping Zhou ◽  
...  

The objectives of this study were to investigate the effect of heat stress duringin vitromaturation on the developmental potential of mouse oocytes and to determine whether the deleterious effect was on the nuclear or cytoplasmic component. While rates of oocyte nuclear maturation (development to the metaphase II stage) did not differ from 37 to 40 °C, rates for blastocyst formation decreased significantly as maturation temperature increased from 38.5 to 39 °C. Chromosome spindle exchange showed that while blastocyst formation did not differ when spindles maturedin vivoorin vitroat 37, 40 or 40.7 °C were transplanted intoin vivomatured cytoplasts, no blastocyst formation was observed whenin vivospindles were transferred into the 40 °C cytoplasts. While oocytes reconstructed between 37 °C ooplasts and 37 or 40 °C karyoplasts developed into 4-cell embryos at a similar rate, no oocytes reconstituted between 40 °C ooplasts and 37 °C spindles developed to the 4-cell stage. Immunofluorescence microscopy revealed impaired migration of cortical granules and mitochondria in oocytes matured at 40 °C compared with oocytes matured at 37 °C. A decreased glutathione/GSSG ratio was also observed in oocytes matured at 40 °C. While spindle assembling was normal and no MAD2 was activated in oocytes matured at 37 or 40 °C, spindle assembling was affected and MAD2 was activated in some of the oocytes matured at 40.7 °C. It is concluded that 1) oocyte cytoplasmic maturation is more susceptible to heat stress than nuclear maturation, and 2) cytoplasmic rather than nuclear components determine the pre-implantation developmental capacity of an oocyte.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


Zygote ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Maurizio Zuccotti ◽  
Rubén H. Ponce ◽  
Michele Boiani ◽  
Stefano Guizzardi ◽  
Paolo Govoni ◽  
...  

Mouse antral oocytes can be classified in two different types termed SN or NSN oocytes, depending on the presence or absence, respectively, of a ring of Hoechst 33342-positive chromatin surrounding the nucleolus. The aim of the present study was to test the developmental competence to blastocyst of the two types of oocytes. Here we show that following isolation, classification and culture of cumulus-free antral oocytes, 14.7% and 74.5% of NSN and SN oocytes, respectively, reached the metaphase II stage. When fertilised and further cultured none of the metaphase II NSN oocytes developed beyond the 2-cell stage whilst 47.4% of the metaphase II SN oocytes reached the 4-cell stage and 18.4% developed to blastocyst. The findings reported in this paper may contribute to improved procedures of female gamete selection for in vitro fertilisation of humans and farm animals. Furthermore, the selection of oocytes with better developmental potential may be of interest for studies on nuclear/cytoplasm interaction, particularly in nuclear-transfer experiments.


2010 ◽  
Vol 22 (6) ◽  
pp. 966 ◽  
Author(s):  
Jinping Luo ◽  
Lynda K. McGinnis ◽  
William H. Kinsey

Fyn kinase is highly expressed in oocytes, with inhibitor and dominant-negative studies suggesting a role in the signal transduction events during egg activation. The purpose of the present investigation was to test the hypothesis that Fyn is required for calcium signalling, meiosis resumption and pronuclear congression using the Fyn-knockout mouse as a model. Accelerated breeding studies revealed that Fyn-null females produced smaller litter sizes at longer intervals and exhibited a rapid decline in pup production with increasing age. Fyn-null females produced a similar number of oocytes, but the frequency of immature oocytes and mature oocytes with spindle chromosome abnormalities was significantly higher than in controls. Fertilised Fyn-null oocytes frequently (24%) failed to undergo pronuclear congression and remained at the one-cell stage. Stimulation with gonadotropins increased the number of oocytes ovulated, but did not overcome the above defects. Fyn-null oocytes overexpressed Yes kinase in an apparent effort to compensate for the loss of Fyn, yet still exhibited an altered pattern of protein tyrosine phosphorylation. In summary, Fyn-null female mice exhibit reduced fertility that appears to result from actin cytoskeletal defects rather than calcium signalling. These defects cause developmental arrest during oocyte maturation and pronuclear congression.


2007 ◽  
Vol 19 (1) ◽  
pp. 203 ◽  
Author(s):  
A. Aroyo ◽  
S. Yavin ◽  
Z. Roth ◽  
A. Arav

Heat stress is a major contributing factor to low fertility among dairy cattle, as reflected by the dramatic reduction in conception rate during the hot months. The effects of thermal stress on oocyte competence and embryonic development have been well documented. However, timing of embryonic cleavage, which may be considered a parameter for the identification of good-quality embryos, and its association with elevated temperatures have not been studied. Two experiments were performed to examine and characterize seasonal effects (i.e. thermal stress) on cleavage timing of bovine parthenogenetic embryos. Oocytes were aspirated from ovaries collected at the local abattoir in 2 seasons: cold (Dec–Apr) and hot (May–Nov). Matured oocytes were chemically activated (ionomycin followed by 6-DMAP) and cultured in vitro; cleavage timing to the 2- and 4-cell stages was observed and documented. The one-way ANOVA procedure was used for statistical analysis. In the first experiment (n = 5416 oocytes), cleavage was documented at specific time points during development post-activation. The peak in embryonic development to the 2-cell stage was earlier (22 to 27 vs. 27 to 40 h after activation) and the cleavage rate higher (39 vs. 21%; P &lt; 0.0001) during the cold season relative to the hot season, respectively. Similarly, the peak in 4-cell-stage development was also observed earlier (46–52 vs. 52–70 h after activation) and corresponded with a higher proportion of developing embryos (33 vs. 21%; P &lt; 0.0001) during the cold season as compared to the hot season, respectively. These results indicate that embryonic development is delayed and a lower proportion of embryos cleaved during the hot season. To better understand the delay in cleavage timing, a second experiment (n = 308 oocytes) was performed through two consecutive hot seasons. A time-lapse system (EmbryoGuard; IMT, Ltd., Ness-Ziona, Israel) was employed to collect accurate data on the first cleavage division, known to be indicative of embryo quality. The time-lapse system was pre-programmed to take photos at 1-h intervals such that culture dishes did not need to be removed from the incubator. Similar to the pattern noted for the hot season in the first experiment, a wide distribution of cleavage timing (18-40 h after activation) was observed. Further analysis revealed that embryos cleaved in 2 distinct waves: cleavage timing of the first wave (18 to 25 h after activation) was characterized by a time frame similar to that in the cold season, suggesting good-quality embryos; however, the second wave, from 27 to 40 h after activation, presented a delay in cleavage timing, suggesting that these late-cleaving embryos are of inferior quality. Taken together, the results of the 2 experiments lead to the assumption that oocytes harvested from lactating cows during the hot season are of reduced developmental potential, which may be explained, in part, by the pattern of 2 cleavage waves. Furthermore, cleavage timing appears to be a good indicator of embryo potential and may increase the chances of selecting better in vitro-derived embryos during the hot season for embryo transfer.


1975 ◽  
Author(s):  
C. Kluft

The rate of contact activation of fibrinolysis is considered to reflect the activation rate of proactivator and Hageman factor. This study was undertaken to determine the role of Cl-inactivator in this process.Contact activation of fibrinolysis was performed according to Ogston et al. (1969), J. Clin. Invest. 48, 1786-1801. The rate of activity generation was measured in plasma with various levels of Cl-inactivator and appeared to be dependent on that level; i.e., a high level of Cl-inactivator corresponds with a slow rate of activity generation.It has recently been demonstrated that the fibrinolytic activity of euglobulin fractions is strongly inhibited by Cl-inactivator also present in this fraction. The activity generation of contact activation is found to be accompanied by a gradual decrease in functional Cl-inactivator in the euglobulin fraction. The fibrinolytic activity is set free by this disappearance of inhibition.It is concluded that the rate of contact activation of fibrinolysis must be interpreted in terms of the inactivation of Cl-inactivator rather than of the activation of proenzymes. All enzymes capable of inactivating Cl-inactivator can contribute to the process of contact activation of fibrinolysis. This mechanism might account for the observed defects in fibrinolysis in vitro in Fletcher Factor deficient patients.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Daisuke Sano ◽  
Yuki Yamamoto ◽  
Tomo Samejima ◽  
Yasunari Seita ◽  
Tomo Inomata ◽  
...  

SummaryIn nuclear-transferred or round spermatid-injected oocytes, artificial activation is required for further development in mammals. Although strontium chloride is widely used as the reagent for inducing oocyte activation in mice, the optimal method for oocyte activation remains controversial in rats because ovulated rat oocytes are spontaneously activated in vitro before artificial activation is applied. In our previous study, we found that cytostatic factor activity, which is indispensable for arrest at the MII stage, is potentially low in rats and that this activity differs greatly between two outbred rats (Slc: Sprague-Dawley (SD) and Crj: Wistar). Therefore, it is necessary to establish an optimal protocol for oocyte activation independent of strains. Given that comparative studies of the in vitro development of oocytes activated by different activation protocols are very limited, we compared four different protocols for oocyte activation (ethanol, ionomycin, strontium and electrical pulses) in two different SD and Wistar rats. Our results show that oocytes derived from SD rats have significantly higher cleavage and blastocyst formation than those from Wistar rats independent of activation regimes. In both types of rat, ethanol treatment provided significantly higher developmental ability at cleavage and blastocyst formation compared to the other activation protocols. However, the initial culture in a fertilization medium (high osmolarity mR1ECM) for 24 h showed a detrimental effect on the further in vitro development of parthenogenetic rat oocytes. Taken together, our results show that ethanol treatment is the optimal protocol for the activation of rat oocytes in SD and Wistar outbred rats. Our data also suggest that high-osmolarity media are inadequate for the in vitro development of parthenogenetically activated oocytes compared with fertilized oocytes.


2004 ◽  
Vol 16 (2) ◽  
pp. 141
Author(s):  
S. Eckardt ◽  
N.A. Leu ◽  
K.J. McLaughlin

In both murine and porcine preimplantation stage clones, mosaicism in gene expression has been observed, indicating variation in transcription of some genes between cells of the individual clone (Boiani M et al., 2002 Genes Dev. 16, 1209–1219; Park KW et al., 2002 Biol. Reprod. 66, 1001–1005). This observation raises the question as to whether all blastomeres within one early-stage clone are equivalent, or whether there are differences in developmental potential. To address this, we aggregated preimplantation-stage clone embryos with fertilized embryos and assessed contribution of Oct4-GFP expressing cells of clone origin in blastocysts and in vitro outgrowths. In normal embryos, the Oct4-GFP transgene is expressed during preimplantation stages and reflects expression of Oct4 protein. Mouse cumulus cell clones were produced from cells transgenic for Oct4-GFP (Szabó PE et al., 2002 Mech. Dev. 115, 157–160) as described (Boiani M et al., 2002 Genes Dev. 16, 1209–1219). Four-cell-stage clones and synchronous fertilized non-transgenic embryos were aggregated in micro-wells after removal of the zona pellucida using acid Tyrode’s solution. Aggregates were cultured to the blastocyst stage in -MEM supplemented with bovine serum albumin (0.4% w/v). All control chimeras produced from four-cell-stage fertilized non-transgenic and Oct4-GFP transgenic embryos formed blastocysts, and 15 of 20 had GFP-expressing cells. The majority of clone-wild-type aggregates developed to the blastocyst stage (35/40); however, contribution of GFP-expressing cells was observed in fewer blastocysts compared to controls (12/35; P&lt;0.05). Contribution of GFP expressing clone cells to the ICM varied between 30% and 100% of cells as determined by subjective evaluation of GFP fluorescence overlaying bright-field images. During in vitro outgrowth formation of synchronous aggregation chimeras of clone and wild-type embryos, maintenance of clone contribution to the ICM mound was observed, but at a lower frequency (12% v. 34% at the blastocyst stage). The results suggest that aggregation with fertilized cells does not provide benefit to clone blastomeres during preimplantation stages. Possibly, clone blastomeres may not be competitive with wild-type blastomeres, or are developmentally asynchronous, which will be tested using asynchronous chimeras.


1993 ◽  
Vol 178 (1) ◽  
pp. 257-264 ◽  
Author(s):  
K H Grabstein ◽  
T J Waldschmidt ◽  
F D Finkelman ◽  
B W Hess ◽  
A R Alpert ◽  
...  

The effects of interleukin 7 (IL-7) on the growth and differentiation of murine B cell progenitors has been well characterized using in vitro culture methods. We have investigated the role of IL-7 in vivo using a monoclonal antibody that neutralizes IL-7. We find that treatment of mice with this antibody completely inhibits the development of B cell progenitors from the pro-B cell stage forward. We also provide evidence that all peripheral B cells, including those of the B-1 and conventional lineages, are derived from IL-7-dependent precursors. The results are consistent with the rapid turnover of B cell progenitors in the marrow, but a slow turnover of mature B cells in the periphery. In addition to effects on B cell development, anti-IL-7 treatment substantially reduced thymus cellularity, affecting all major thymic subpopulations.


Reproduction ◽  
2001 ◽  
pp. 925-932 ◽  
Author(s):  
X Li ◽  
LH Morris ◽  
WR Allen

The influence of co-culture with either oviduct epithelial cells or fetal fibroblast cells on in vitro maturation of equine oocytes and their potential for development to blastocysts and fetuses after intracytoplasmic sperm injection (ICSI) was investigated. The oocytes were obtained from ovaries from abattoirs and were matured in vitro for 28-30 h in TCM-199 only, or in TCM-199 co-culture with oviduct epithelial cells or fetal fibroblast cells. Metaphase II oocytes were subjected to ICSI with an ionomycin-treated spermatozoon. The injected oocytes were cultured for 7-9 days in Dulbecco's modified Eagle's medium. Morphologically normal early blastocysts were transferred to the uteri of recipient mares. Nuclear maturation rates and the rates of cleavage to the two-cell stage for injected oocytes were similar in the groups of oocytes that were matured in TCM-199 (49 and 63%), in co-culture with oviduct epithelial cells (53 and 65%) or in co-culture with fetal fibroblasts (51 and 57%). There were no significant differences in the proportions of blastocysts that developed from the two-cell embryos derived from oocytes matured by co-culture with either oviduct epithelial cells (30%) or fetal fibroblasts (17%). However, significantly higher proportions of blastocysts were produced from both these co-culture groups than from the groups of oocytes matured in TCM-199 only (P < 0.05). Six of the blastocysts that had developed from oocytes co-cultured with oviduct epithelial cells were transferred into recipient mares and four pregnancies resulted. These results demonstrate a beneficial influence of co-culture with either oviduct epithelial cells or fetal fibroblasts for maturation of oocytes in vitro.


Sign in / Sign up

Export Citation Format

Share Document