Embryo culture at a reduced oxygen concentration of 5%: a mini review

Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 355-361 ◽  
Author(s):  
R. Sciorio ◽  
G.D. Smith

SummaryThe optimum oxygen tension for culturing mammalian embryos has been widely debated by the scientific community. While several laboratories have moved to using 5% as the value for oxygen tension, the majority of modern in vitro fertilization (IVF) laboratory programmes still use 20%. Several in vivo studies have shown the oxygen tension measured in the oviduct of mammals fluctuates between 2% and 8% and in cows and primates this values drops to <2% in the uterine milieu. In human IVF, a non-physiological level of 20% oxygen has been used in the past. However, several studies have shown that atmospheric oxygen introduces adverse effects to embryo development, not limited to numerous molecular and cellular physiology events. In addition, low oxygen tension plays a critical role in reducing the high level of detrimental reactive oxygen species within cells, influences embryonic gene expression, helps with embryo metabolism of glucose, and enhances embryo development to the blastocyst stage. Collectively, this improves embryo implantation potential. However, clinical studies have yielded contradictory results. In almost all reports, some level of improvement has been identified in embryo development or implantation, without any observed drawbacks. This review article will examine the recent literature and discusses ongoing efforts to understand the benefits that low oxygen tension can bring to mammal embryo development in vitro.

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 241 ◽  
Author(s):  
Efseveia Frakolaki ◽  
Panagiota Kaimou ◽  
Maria Moraiti ◽  
Katerina Kalliampakou ◽  
Kalliopi Karampetsou ◽  
...  

Low oxygen tension exerts a profound effect on the replication of several DNA and RNA viruses. In vitro propagation of Dengue virus (DENV) has been conventionally studied under atmospheric oxygen levels despite that in vivo, the tissue microenvironment is hypoxic. Here, we compared the efficiency of DENV replication in liver cells, monocytes, and epithelial cells under hypoxic and normoxic conditions, investigated the ability of DENV to induce a hypoxia response and metabolic reprogramming and determined the underlying molecular mechanism. In DENV-infected cells, hypoxia had no effect on virus entry and RNA translation, but enhanced RNA replication. Overexpression and silencing approaches as well as chemical inhibition and energy substrate exchanging experiments showed that hypoxia-mediated enhancement of DENV replication depends on the activation of the key metabolic regulators hypoxia-inducible factors 1α/2α (HIF-1α/2α) and the serine/threonine kinase AKT. Enhanced RNA replication correlates directly with an increase in anaerobic glycolysis producing elevated ATP levels. Additionally, DENV activates HIF and anaerobic glycolysis markers. Finally, reactive oxygen species were shown to contribute, at least in part through HIF, both to the hypoxia-mediated increase of DENV replication and to virus-induced hypoxic reprogramming. These suggest that DENV manipulates hypoxia response and oxygen-dependent metabolic reprogramming for efficient viral replication.


2013 ◽  
Vol 25 (1) ◽  
pp. 165
Author(s):  
A. Gambini ◽  
J. Jarazo ◽  
A. De Stefano ◽  
F. Karlaninan ◽  
D. Salamone

Somatic donor cells play a major role during the NT procedure. In vitro culture conditions may affect the capability of these cells to be reprogrammed and to allow embryo development. The aim of this study was to evaluate the effect of in vitro culture at low (5%) or atmospheric (20%) oxygen tension in somatic donor cells for cloned equine embryo production. Adult fibroblasts were obtained through culture of minced tissue from neck biopsies of one horse skin. They were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics in 2 groups: (1) 5% CO2 and (2) 5% CO2 and 5% O2, both groups in humidified air at 39°C. Quiescence of donor cells was induced by growth to confluency for 3 to 5 days prior to NT. Oocyte collection, maturation, cloning, and activation procedures were performed as described by Gambini et al. (2012 Biol. Reprod. 87, 1–9.). After activation, reconstructed embryos (RE) were cultured in DMEM/F12 supplemented with 5% FBS in the well of the well system as 3 reconstructed embryos per well. Cleavage and blastocyst formation (7–8 days) of the experimental groups were assessed. In vitro development, on a per-well and RE basis, was compared using the chi-square test. No statistical differences were observed in cleavage [(1): 48/84, 57%; (2): 54/87, 62%). No difference was observed in blastocyst rates on a per-well basis [(1): 5/28, 18%; (2): 4/29, 14%] or on a per-RE basis [(1): 5/84, 6%; (2): 4/87, 5%]. This work suggests that the oxygen tension during the in vitro culture of somatic donor cells does not affect the quantity of the cloned equine blastocyst produced. Further studies are required to determine if these conditions would affect in vivo embryo development.


2019 ◽  
Author(s):  
Boatema Ofori-Anyinam ◽  
Abi Janet Riley ◽  
Tijan Jobarteh ◽  
Ensa Gitteh ◽  
Binta Sarr ◽  
...  

SummaryThe geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co-evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could affect the function of genes encoding enzymes in these pathways.We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB lineages.Generally, our findings show further differences between MAF and MTB lineages that may have contributed to the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological niche, which we suggest includes areas characterized by low oxygen tension.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
David C. Browe ◽  
Cynthia M. Coleman ◽  
Frank P. Barry ◽  
Stephen J. Elliman

Abstract Articular cartilage lacks an intrinsic repair capacity and due to the ability of mesenchymal stem cells (MSCs) to differentiate into chondrocytes, MSCs have been touted as a cellular source to regenerate damaged cartilage. However, a number of prevailing concerns for such a treatment remain. Generally, administration of MSCs into a cartilage defect results in poor regeneration of the damaged cartilage with the repaired cartilage consisting primarily of fibro-cartilage rather than hyaline cartilage. Methods that improve the chondrogenic potential of transplanted MSCs in vivo may be advantageous. In addition, the proclivity of MSC-derived cartilage to undergo hypertrophic differentiation or form bone in vivo also remains a clinical concern. If MSC-derived cartilage was to undergo hypertrophic differentiation in vivo, this would be deleterious in a clinical setting. This study focuses on establishing a mechanism of action by which hypoxia or low oxygen tension can be used to both enhance chondrogenesis and attenuate hypertrophic differentiation of both MSC and ATDC5 derived chondrocytes. Having elucidated a novel mechanism of action, the subsequent goals of this study were to develop an in vitro culture regime to mimic the beneficial effects of physiological low oxygen tension in a normoxic environment.


1977 ◽  
Vol 72 (3) ◽  
pp. 361-369 ◽  
Author(s):  
JENNIFER M. DEHNEL ◽  
D. L. HAMBLEN

SUMMARY Somatomedins are the intermediaries through which growth hormone acts on the epiphyseal growth plate to effect linear skeletal growth. Rat epiphyseal chondrocytes were isolated and cultured in vitro in the presence of somatomedin. Two sources of somatomedin were used, foetal calf serum and rat liver perfusates. The chondrocytes proliferated and synthesized sulphated glycosaminoglycans when grown in the presence of somatomedin from either source, but were not metabolically active in chemically defined medium alone. Some differences in the growth patterns in response to serum or liver somatomedins are reported and discussed. Chondrocyte metabolic activity in the presence of somatomedin in vitro showed a graded response to alterations in the atmospheric oxygen, being greatest at low oxygen pressure, and almost completely inhibited at 95% oxygen. A gradient of local oxygen tension has been reported to exist across the epiphyseal plate in vivo. The effects of somatomedin combined with changing oxygen levels may help to explain the divergence of cell proliferation and matrix synthesis seen in the various regions of the growth plate.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

1997 ◽  
Vol 17 (2) ◽  
pp. 851-856 ◽  
Author(s):  
B Hu ◽  
E Wright ◽  
L Campbell ◽  
K L Blanchard

The erythropoietin (EPO) gene is one of the best examples of a mammalian gene controlled by oxygen tension. The DNA elements responsible for hypoxia-induced transcription consist of a short region of the proximal promoter and a <50-bp 3' enhancer. The elements act cooperatively to increase the transcriptional initiation rate approximately 100-fold in response to low oxygen tension in Hep3B cells. Two distinct types of transactivating proteins have been demonstrated to bind the response elements in the human EPO enhancer in vitro: one shows hypoxia-inducible DNA binding activity, while the other activity binds DNA under normoxic and hypoxic conditions. We have investigated the DNA-protein interactions on the human EPO enhancer in living tissue culture cells that produce EPO in a regulated fashion (Hep3B) and in cells that do not express EPO under any conditions tested (HeLa). We have identified in vivo DNA-protein interactions on the control elements in the human EPO enhancer by ligation-mediated PCR technology. We show that the putative protein binding sites in the EPO enhancer are occupied in vivo under conditions of normoxia, hypoxia, and cobalt exposure in EPO-producing cells. These sites are not occupied in cells that do not produce EPO. We also provide evidence for a conformational change in the topography of the EPO enhancer in response to hypoxia and cobalt exposure.


Sign in / Sign up

Export Citation Format

Share Document