Nicolaides–Baraitser syndrome in a patient with hypertrophic cardiomyopathy and SMARCA2 gene deletion

2021 ◽  
pp. 1-3
Author(s):  
Ross Foley ◽  
Sophie Duignan ◽  
Linda McArdle ◽  
David R. Betts ◽  
Andrew Green ◽  
...  

Abstract Nicolaides–Baraitser syndrome is a rare, neuro-developmental disorder caused by heterozygous pathogenic variants in the SMARCA2 gene, involved with chromatin regulation. Cardinal features include intellectual disability, short stature, microcephaly, triangular facies, sparse hair, brachydactyly, prominent interphalangeal joints and seizures. Genetic testing demonstrated a loss within SMARCA2 at 9p24.3 inclusive of basepairs 2094861_2141830 (hg19) in our patient. This case highlights a child with Nicolaides–Baraiter syndrome, a SMARCA2 gene deletion and a novel association of hypertrophic obstructive cardiomyopathy.

Heart ◽  
2020 ◽  
pp. heartjnl-2020-316798
Author(s):  
Monica Ahluwalia ◽  
Carolyn Y Ho

Genetic testing in hypertrophic cardiomyopathy (HCM) is a valuable tool to manage patients and their families. Genetic testing can help inform diagnosis and differentiate HCM from other disorders that also result in increased left ventricular wall thickness, thereby directly impacting treatment. Moreover, genetic testing can definitively identify at-risk relatives and focus family management. Pathogenic variants in sarcomere and sarcomere-related genes have been implicated in causing HCM, and targeted gene panel testing is recommended for patients once a clinical diagnosis has been established. If a pathogenic or likely pathogenic variant is identified in a patient with HCM, predictive genetic testing is recommended for their at-risk relatives to determine who is at risk and to guide longitudinal screening and risk stratification. However, there are important challenges and considerations to implementing genetic testing in clinical practice. Genetic testing results can have psychological and other implications for patients and their families, emphasising the importance of genetic counselling before and after genetic testing. Determining the clinical relevance of genetic testing results is also complex and requires expertise in understanding of human genetic variation and clinical manifestations of the disease. In this review, we discuss the genetics of HCM and how to integrate genetic testing in clinical practice.


2021 ◽  
Vol 22 (19) ◽  
pp. 10401
Author(s):  
Jiri Bonaventura ◽  
Eva Polakova ◽  
Veronika Vejtasova ◽  
Josef Veselka

Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with an estimated prevalence of up to 1 in 200 individuals. In the majority of cases, HCM is considered a Mendelian disease, with mainly autosomal dominant inheritance. Most pathogenic variants are usually detected in genes for sarcomeric proteins. Nowadays, the genetic basis of HCM is believed to be rather complex. Thousands of mutations in more than 60 genes have been described in association with HCM. Nevertheless, screening large numbers of genes results in the identification of many genetic variants of uncertain significance and makes the interpretation of the results difficult. Patients lacking a pathogenic variant are now believed to have non-Mendelian HCM and probably have a better prognosis than patients with sarcomeric pathogenic mutations. Identifying the genetic basis of HCM creates remarkable opportunities to understand how the disease develops, and by extension, how to disrupt the disease progression in the future. The aim of this review is to discuss the brief history and recent advances in the genetics of HCM and the application of molecular genetic testing into common clinical practice.


2019 ◽  
Vol 104 (4) ◽  
pp. 758-766 ◽  
Author(s):  
Illja J. Diets ◽  
Roos van der Donk ◽  
Kristina Baltrunaite ◽  
Esmé Waanders ◽  
Margot R.F. Reijnders ◽  
...  

2019 ◽  
pp. 15-20
Author(s):  
Jamileh Malbin

Rubinstein-Taybi Syndrome (RSTS) as a group of congenital anomalies mainly include, short broad thumbs and toes, short stature and intellectual disability are caused by either a micro-deletion in the CREBBP (CBP) or EP300 genes. Generally most RSTS patients have a deletion in the CREBBP gene but some patients have shown deletion in the EP300 gene. Here we introduce an affected case without some typical characteristics of RSTS with deletions in the CREBBP and SHANK3 genes. The patient was a 24 years old man with a history of infantile hypotonia and childhood developmental delay, heavy eyebrows, ptosis, speech difficulty without large thumb and toes. The conventional cytogenetic finding was normal male. Further investigation was performed using Multiplex Ligation Probe Amplification (MLPA) technique to screen micro-deletion syndromes and subtelomeric rearrangements and Micro-deletion was detected in CREBBP and SHANK3 gene and a detected in DECR2 gene. Deletion in the CREBBP or EP300 genes or both in the patients with broad thumb and toes (RSTS) has been detected but there are other patients with deletion in CREBBP gene without this sign of RSTS. However, we report SHANK3 gene deletion in the patient with deletion in CREBBP gene and without broad thumbs and toes. Keywords: Rubinstein-Taybi Syndrome (RSTS); CREBBP; SHANK3; Broad thumb and toes


2021 ◽  
Author(s):  
Yena Lee ◽  
Yunha Choi ◽  
Go Hun Seo ◽  
Gu-Hwan Kim ◽  
Changwon Keum ◽  
...  

Abstract Background: The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate (ATP)-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorder, including the Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF-related intellectual disability (SSRIDD).Methods: Whole exome sequencing was performed in 564 Korean patients with neurodevelopmental disorders. Twelve patients with SSRIDDs (2.1%) were included, and their medical records were retrospectively analyzed. Results: ARID1B, found in eight patients, were the most frequently-altered gene. Four patients harbored mutations in SMARCA4, SMARCB1, ARID2, and SMARCA2. Ten patients were diagnosed with CSS, and one patient without typical phenotypes was classified as ARID1B-related intellectual disability. Another patient harboring the SMARCA2 mutation was diagnosed with NCBRS. All pathogenic variants in ARID1B were truncating, whereas variants in SMARCA2, SMARCB1, and SMARCA4 were nontruncating (missense) mutations. Frequently-observed phenotypes were thick eyebrows (10/12), hypertrichosis (8/12), coarse face (8/12), thick lips (8/12), and long eyelashes (8/12). Developmental delay was observed in all patients, and profound speech delay was also characteristic. Agenesis or hypoplasia of the corpus callosum was found in half of the patients (6/12).Conclusions: SSRIDD holds a broad disease spectrum, including NCBRS, CSS, and ARID1B-related intellectual disability. Thus, the SSRIDD should be considered as a small but important cause of human developmental disorder.


Author(s):  
Emily Breidbart ◽  
Liyong Deng ◽  
Patricia Lanzano ◽  
Xiao Fan ◽  
Jiancheng Guo ◽  
...  

Abstract Objectives There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. Methods We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. Results Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. Conclusions Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 968
Author(s):  
Julien Van Gils ◽  
Frederique Magdinier ◽  
Patricia Fergelot ◽  
Didier Lacombe

The Rubinstein-Taybi syndrome (RSTS) is a rare congenital developmental disorder characterized by a typical facial dysmorphism, distal limb abnormalities, intellectual disability, and many additional phenotypical features. It occurs at between 1/100,000 and 1/125,000 births. Two genes are currently known to cause RSTS, CREBBP and EP300, mutated in around 55% and 8% of clinically diagnosed cases, respectively. To date, 500 pathogenic variants have been reported for the CREBBP gene and 118 for EP300. These two genes encode paralogs acting as lysine acetyltransferase involved in transcriptional regulation and chromatin remodeling with a key role in neuronal plasticity and cognition. Because of the clinical heterogeneity of this syndrome ranging from the typical clinical diagnosis to features overlapping with other Mendelian disorders of the epigenetic machinery, phenotype/genotype correlations remain difficult to establish. In this context, the deciphering of the patho-physiological process underlying these diseases and the definition of a specific episignature will likely improve the diagnostic efficiency but also open novel therapeutic perspectives. This review summarizes the current clinical and molecular knowledge and highlights the epigenetic regulation of RSTS as a model of chromatinopathy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Beatrice Berti ◽  
Giovanna Longo ◽  
Francesco Mari ◽  
Stefano Doccini ◽  
Ilaria Piccolo ◽  
...  

Abstract Background Charcot-Marie-Tooth disease (CMT) type 4B3 (CMT4B3) is a rare form of genetic neuropathy associated with variants in the MTMR5/SBF1 gene. MTMR5/SBF1 is a pseudophosphatase predicted to regulate endo-lysosomal trafficking in tandem with other MTMRs. Although almost ubiquitously expressed, pathogenic variants primarily impact on the peripheral nervous system, corroborating the involvement of MTMR5/SBF1 and its molecular partners in Schwann cells-mediated myelinization. Case presentation We report a case of severe CMT4B3 characterized by early-onset motor and axonal polyneuropathy in an Italian child in absence of any evidence of brain and spine MRI abnormalities or intellectual disability and with a biochemical profile suggestive of mitochondrial disease. Using an integrated approach combining both NGS gene panels and WES analysis, we identified two novel compound heterozygous missense variants in MTMR5/SBF1 gene, p.R763H (c.2291G > A) and p.G1064E (c.3194G > A). Studies in muscle identified partial defects of oxidative metabolism. Conclusion We describe the first case of an early onset severe polyneuropathy with motor and axonal involvement, due to recessive variants in the MTMR5/SBF1 gene, with no evidence of brain and spine MRI abnormalities, intellectual disability, no clinical and neurophysiological evidences of distal sensory impairment, and rapid neuromuscular deterioration. This report suggests that MTMR5/SBF1 should be considered in cases of infantile-onset CMT with secondary mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document