The North–South Anisotropy and the Radial Density Gradient of Galactic Cosmic Rays at 1 AU

1995 ◽  
Vol 12 (2) ◽  
pp. 153-158 ◽  
Author(s):  
D. L. Hall ◽  
M. L. Duldig ◽  
J. E. Humble

AbstractThe radial density gradient (Gr) of Galactic cosmic rays in the ecliptic plane points outward from the Sun. This indicates an increasing density of cosmic ray particles beyond the Earth’s orbit. Due to this gradient and the direction of the Sun’s interplanetary magnetic field (IMF) above and below the IMF wavy neutral sheet, there exists an anisotropic flow of cosmic ray particles approximately perpendicular to the ecliptic plane (i.e. in the direction parallel to BIMF × Gr). This effect is called the north–south anisotropy (ξNS) and manifests as a diurnal variation in sidereal time in the particle intensity recorded by a cosmic ray detector. By analysing the yearly averaged sidereal diurnal variation recorded by five neutron monitors and six muon telescopes from 1957 to 1990, we have deduced probable values of the average rigidity spectrum and magnitude of ξNS. Furthermore, we have used determined yearly amplitudes of ξNS to infer the magnitude of Gr for particles with rigidities in excess of 10 GV.

2017 ◽  
Vol 609 ◽  
pp. A32 ◽  
Author(s):  
R. Modzelewska ◽  
M. V. Alania

Aims. We study features of the 3D solar anisotropy of Galactic cosmic rays (GCR) for 1965−2014 (almost five solar cycles, cycles 20−24). We analyze the 27-day variations of the 2D GCR anisotropy in the ecliptic plane and the north-south anisotropy normal to the ecliptic plane. We study the dependence of the 27-day variation of the 3D GCR anisotropy on the solar cycle and solar magnetic cycle. We demonstrate that the 27-day variations of the GCR intensity and anisotropy can be used as an important tool to study solar wind, solar activity, and heliosphere. Methods. We used the components Ar, Aϕ and At of the 3D GCR anisotropy that were found based on hourly data of neutron monitors (NMs) and muon telescopes (MTs) using the harmonic analyses and spectrographic methods. We corrected the 2D diurnal (~24-h) variation of the GCR intensity for the influence of the Earth magnetic field. We derived the north-south component of the GCR anisotropy based on the GG index, which is calculated as the difference in GCR intensities of the Nagoya multidirectional MTs. Results. We show that the behavior of the 27-day variation of the 3D anisotropy verifies a stable long-lived active heliolongitude on the Sun. This illustrates the usefulness of the 27-day variation of the GCR anisotropy as a unique proxy to study solar wind, solar activity, and heliosphere. We distinguish a tendency of the 22-yr changes in amplitude of the 27-day variation of the 2D anisotropy that is connected with the solar magnetic cycle. We demonstrate that the amplitudes of the 27-day variation of the north-south component of the anisotropy vary with the 11-yr solar cycle, but a dependence of the solar magnetic polarity can hardly be recognized. We show that the 27-day recurrences of the GG index and the At component are highly positively correlated, and both are highly correlated with the By component of the heliospheric magnetic field.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


2018 ◽  
Vol 68 (1) ◽  
pp. 377-404 ◽  
Author(s):  
Vincent Tatischeff ◽  
Stefano Gabici

In this review, we first reassess the supernova remnant paradigm for the origin of Galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light-element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured beryllium abundances in old halo stars of low metallicity with the standard model of the Galactic cosmic-ray origin. We then discuss the various cosmic-ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. It seems to us that, among all possibilities, the superbubble model provides the most satisfactory explanation for these observations.


2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


1991 ◽  
Vol 126 ◽  
pp. 433-436
Author(s):  
Kunitomo Sakurai

AbstractThe chemical composition of galactic cosmic rays in their sources is similar to that of interstellar clouds or grains which are relatively enriched in refractory and siderophile elements as compared with the chemical composition of the solar atmosphere. Taking into account this fact, it is shown that the cosmic ray source matter can be identified as the dust or grains observed in the envelopes of red supergiant stars or the matter originally ejected from supernova explosions.


2003 ◽  
Vol 21 (6) ◽  
pp. 1275-1288 ◽  
Author(s):  
B. Heber ◽  
G. Sarri ◽  
G. Wibberenz ◽  
C. Paizis ◽  
P. Ferrando ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in December 1997, and its second fast latitude scan in September 2000. In contrast to the first fast latitude scan in 1994/1995, during the second fast latitude scan solar activity was close to maximum. The solar magnetic field reversed its polarity around July 2000. While the first latitude scan mainly gave a snapshot of the spatial distribution of galactic cosmic rays, the second one is dominated by temporal variations. Solar particle increases are observed at all heliographic latitudes, including events that produce >250 MeV protons and 50 MeV electrons. Using observations from the University of Chicago’s instrument on board IMP8 at Earth, we find that most solar particle events are observed at both high and low latitudes, indicating either acceleration of these particles over a broad latitude range or an efficient latitudinal transport. The latter is supported by "quiet time" variations in the MeV electron background, if interpreted as Jovian electrons. No latitudinal gradient was found for >106 MeV galactic cosmic ray protons, during the solar maximum fast latitude scan. The electron to proton ratio remains constant and has practically the same value as in the previous solar maximum. Both results indicate that drift is of minor importance. It was expected that, with the reversal of the solar magnetic field and in the declining phase of the solar cycle, this ratio should increase. This was, however, not observed, probably because the transition to the new magnetic cycle was not completely terminated within the heliosphere, as indicated by the Ulysses magnetic field and solar wind measurements. We argue that the new A<0-solar magnetic modulation epoch will establish itself once both polar coronal holes have developed.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields)


Sign in / Sign up

Export Citation Format

Share Document