Objective Determination of the Large-scale Distribution of Galaxies

1991 ◽  
Vol 9 (1) ◽  
pp. 49-51
Author(s):  
R. J. Dodd ◽  
H. T. MacGillivray

AbstractObservations of the large-scale organisation of matter in the Universe are of great importance in present day astronomy. In the visible part of the spectrum such observations are mainly of the distribution of galaxies on the plane of the sky.Direct and objective prism plates obtained using large Schmidt telescopes form the bulk of the material used. The direct plates provide the observations from which the surface distribution of galaxies may be determined and the prism plates and FLAIR, via redshifts, yield extragalactic distances and hence the three dimensional distribution of galaxies.For large-scale surveys the measuring machines used need to be multi-purpose and fast such as COSMOS and SUPER-COSMOS at the Royal Observatory Edinburgh. More specific programs can make use of smaller, slower machines such as iris photometers and microdensitometers.The method of analysing the data produced rely on seeking density enhancements in the general field of galaxies for cluster detection or using correlation techniques for analysis of the galaxy distribution.A description is given of a southern sky catalogue containing 109 objects recently completed and an outline of some of the extragalactic projects underway using this large body of data.

1964 ◽  
Vol 20 ◽  
pp. 41-45 ◽  
Author(s):  
L. Perek

Planetary nebulae are convenient objects for studying the large-scale structure of the Galaxy. Firstly, they are easily recognized up to considerable distances on plates taken through an objective prism, and secondly, methods have been devised by various authors to determine their distances from two observable quantities: angular diameter and surface brightness. The importance of the subsystem of planetary nebulae has been accentuated especially by the discoveries by Minkowski and Haro of large numbers of planetaries in the direction of the galactic centre. The distribution of planetaries on the sphere suggests that they are connected with the galactic nucleus, but no direct determination of their distances, which would either confirm or contradict this statement, is available. The most serious obstacle in studying the subsystem of planetaries is the lack of observing data. The aim of the reported paper (Perek 1963) is to give a tentative outline of the distribution of planetaries in space based on extensive new observing material.


2017 ◽  
Vol 598 ◽  
pp. A125 ◽  
Author(s):  
S. Rezaei Kh. ◽  
C. A. L. Bailer-Jones ◽  
R. J. Hanson ◽  
M. Fouesneau

1995 ◽  
Vol 148 ◽  
pp. 276-279
Author(s):  
Francisco J. Fuenmayor

AbstractA determination of the C/M5+ ratio, as a function of the galactocentric distance, in the galactic disk is presented. These results are based upon previous determinations of the space density for cool carbon stars and for late giant M stars in the Milky Way. Most of these results were obtained from objective-prism surveys in the near infrared using mainly Schmidt-type telescopes. The ratio C/M5+ appears to increase from 0.05 to 0.25 in the galactic disk, from the galactic center outwards. A mean value of 0.15 of this ratio for the Galaxy is suggested. Correlations between the C/M5+ ratio and currently known metal abundance gradients in the galactic disk are discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Steven E. Campana ◽  
Ragnhildur B. Stefánsdóttir ◽  
Klara Jakobsdóttir ◽  
Jón Sólmundsson

Abstract The distributional response of marine fishes to climate warming would be expected to be very different than that of homeothermic birds and mammals, due both to more direct thermal effects on poikilothermic fish physiology and on reduced habitat fragmentation. In this study, we use a combination of linear models and graphical tools to quantify three-dimensional distribution shifts in 82 fish species caught in 5390 standardized groundfish survey tows over a 22-year time frame in the highly-productive sub-Arctic waters around Iceland. Over a 1 °C range, temperature significantly modified the distributional centroids of 72% of all fish species, but had relatively little effect on diversity. Most of the geographic shifts were to the northwest, and there was no overall tendency to move to deeper waters. A doubling of species abundance significantly influenced the distribution of 62% of species, but lacked the poleward orientation observed with temperature increases. Stenothermal species, those near their upper or lower thermal limits, and those with restricted spatial ranges were most likely to shift their distribution in response to climate warming, while deepwater species were not. A 2–3 °C warming of marine waters seems likely to produce large-scale changes in the location of many sub-Arctic fisheries.


2019 ◽  
Vol 14 (S351) ◽  
pp. 68-71
Author(s):  
Michele Cantiello ◽  
A. Venhola ◽  
M. Paolillo ◽  
R. D’Abrusco ◽  
A. Grado ◽  
...  

AbstractThe Fornax Deep Survey (FDS) is a multi-band imaging survey of the Fornax cluster of galaxies, executed with the ESO VLT Survey Telescope (VST). The survey is designed to reach unprecedented surface brightness and point-source magnitude depth over one virial radius of the cluster. The scientific objectives of the survey are numerous: the study of the galaxy luminosity function, derivation of galaxy scaling relations, determination of the properties of compact stellar systems, an accurate determination of distances and 3-D geometry of the Fornax cluster, analysis of diffuse stellar light and galaxy interactions, etc.In this contribute we give an overview on the interest of the survey on globular clusters (GC) populations, and present a report the status of the study of GCs also providing some preliminary results of our analysis, with particular regard to the two-dimensional distribution of GC candidates over ∼20 sq. degree area of Fornax centered on NGC 1399.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2010 ◽  
Vol 6 (S277) ◽  
pp. 263-266
Author(s):  
Bruno Thooris ◽  
Daniel Pomarède

AbstractOur understanding of the structuring of the Universe from large-scale cosmological structures down to the formation of galaxies now largely benefits from numerical simulations. The RAMSES code, relying on the Adaptive Mesh Refinement technique, is used to perform massively parallel simulations at multiple scales. The interactive, immersive, three-dimensional visualization of such complex simulations is a challenge that is addressed using the SDvision software package. Several rendering techniques are available, including ray-casting and isosurface reconstruction, to explore the simulated volumes at various resolution levels and construct temporal sequences. These techniques are illustrated in the context of different classes of simulations. We first report on the visualization of the HORIZON Galaxy Formation Simulation at MareNostrum, a cosmological simulation with detailed physics at work in the galaxy formation process. We then carry on in the context of an intermediate zoom simulation leading to the formation of a Milky-Way like galaxy. Finally, we present a variety of simulations of interacting galaxies, including a case-study of the Antennae Galaxies interaction.


2005 ◽  
Author(s):  
Arnoud de Bruijne ◽  
Joop van Buren ◽  
Anton Kösters ◽  
Hans van der Marel

Unambiguous and homogeneous geodetic reference frames are essential to the proper determination of locations and heights. The reference frames used in the Netherlands are the Rijksdriehoekmeting (RD) for locations and the Normaal Amsterdamse Peil (NAP) for heights. The RD has traditionally been managed by the Kadaster; the NAP by Rijkswaterstaat. The emergence of satellite positioning has resulted in drastic changes to these geodetic reference frames. A surveyor is now offered one instrument, GPS (the Global Positioning System), capable of the simultaneous determination of locations and heights. This is possible by virtue of one three-dimensional geodetic reference system - the European Terrestrial Reference System (ETRS89) - which in the Netherlands is maintained in a collaborative arrangement between the Kadaster and Rijkswaterstaat. GPS has been advanced as a practical measurement technique by linking the definition of the RD grid to ETRS89. Nevertheless the introduction of GPS also revealed distortions in the RD grid, which are modelled in the RDNAPTRANSTM2004 transformation. Furthermore, the use of the geoid model has become essential to the use of GPS in determining the height in comparison to NAP. Subsidence that has disrupted the backbone of the NAP gave cause to the need for a large-scale adjustment of the heights of the underground benchmarks and, in so doing, of the grid. Consequently new NAP heights have been introduced at the beginning of 2005; a new definition of the RD grid that had already been introduced in 2000 was once again modified in 2004. During the past few years two NCG subcommissions have devoted a great deal of time to these modifications. This publication lays down ETRS89, the RD and the NAP, together with their mutual relationships. In addition to reviewing the history of the reference frames and the manner in which they are maintained (including, for example, the use of AGRS.NL as the basis for the Dutch geometric infrastructure), the publication also discusses the status of the frames as at 1 January 2005. This encompasses the realisation of ETRS89 via AGRS.NL, the revision and new definition of the RD grid in 2004, and the new NAP publication in 2005. The publication also describes the mutual relationships between the frames in the modernized RDNAPTRANSTM2004 transformation consisting of the new NLGEO2004 geoid model and a model for the distortions of the RD grid. In conclusion, the publication also devotes attention to the future maintenance of the ETRS89, RD and NAP. The continuity of the link between the traditional frames and the three-dimensional frames is of great importance, and ETRS89 will continue to fulfil this linking role. The GPS base network and AGRS.NL reference stations will increasingly assume the leading role in the maintenance of the RD frame. The maintenance of the NAP will continue to be necessary, although during the coming decades the the primary heights will not need revision. In so doing the high quality of the geodetic reference frames required for their use in actual practice will continue to be guaranteed.


1980 ◽  
Vol 5 ◽  
pp. 817-826
Author(s):  
B. E. J. Pagel

SummaryThis review concerns recent work on the determination of overall metallicities [Fe/H] in a number of globular clusters and the systematics of mixing effects displayed (usually) by weak CH and strong CN. Special attention is given to the globular cluster ω Centauri, where both metal abundance variations and mixing effects occur and are closely intertwined. Recent observations carried out at the Anglo-Australian Telescope by E.A. Mallia and D.C. Watts have revealed large variations in the strength of metallic lines across the red giant branch of this cluster.


2013 ◽  
Vol 9 (S298) ◽  
pp. 240-245 ◽  
Author(s):  
H.-B. Yuan ◽  
X.-W. Liu ◽  
M.-S Xiang ◽  
Z.-Y. Huo ◽  
H.-H. Zhang ◽  
...  

AbstractWith modern large scale spectroscopic surveys, such as the SDSS and LSS-GAC, Galactic astronomy has entered the era of millions of stellar spectra. Taking advantage of the huge spectroscopic database, we propose to use a “standard pair" technique to a) Estimate multi-band extinction towards sightlines of millions of stars; b) Detect and measure the diffuse interstellar bands in hundreds of thousands SDSS and LAMOST low-resolution spectra; c) Search for extremely faint emission line nebulae in the Galaxy; and d) Perform photometric calibration for wide field imaging surveys. In this contribution, we present some results of applying this technique to the SDSS data, and report preliminary results from the LAMOST data.


Sign in / Sign up

Export Citation Format

Share Document