scholarly journals Disparate Associations of Years of Football Participation and a Metric of Head Impact Exposure with Neurobehavioral Outcomes in Former Collegiate Football Players

Author(s):  
Benjamin L. Brett ◽  
Amy M. Nader ◽  
Zachary Y. Kerr ◽  
Avinash Chandran ◽  
Samuel R. Walton ◽  
...  

Abstract Objectives: Years of sport participation (YoP) is conventionally used to estimate cumulative repetitive head impacts (RHI) experienced by contact sport athletes. The relationship of this measure to other estimates of head impact exposure and the potential associations of these measures with neurobehavioral functioning are unknown. We investigated the association between YoP and the Head Impact Exposure Estimate (HIEE), and whether associations between the two estimates of exposure and neurobehavioral functioning varied. Methods: Former American football players (N = 58; age = 37.9 ± 1.5 years) completed in-person evaluations approximately 15 years following sport discontinuation. Assessments consisted of neuropsychological assessment and structured interviews of head impact history (i.e., HIEE). General linear models were fit to test the association between YoP and the HIEE, and their associations with neurobehavioral outcomes. Results: YoP was weakly correlated with the HIEE, p = .005, R 2 = .13. Higher YoP was associated with worse performance on the Symbol Digit Modalities Test, p = .004, R 2 = .14, and Trail Making Test-B, p = .001, R 2 = .18. The HIEE was associated with worse performance on the Delayed Recall trial of the Hopkins Verbal Learning Test-Revised, p = .020, R 2 = .09, self-reported cognitive difficulties (Neuro-QoL Cognitive Function), p = .011, R 2 = .10, psychological distress (Brief Symptom Inventory-18), p = .018, R 2 = .10, and behavioral regulation (Behavior Rating Inventory of Executive Function for Adults), p = .017, R 2 = .10. Conclusions: YoP was marginally associated with the HIEE, a comprehensive estimate of head impacts sustained over a career. Associations between each exposure estimate and neurobehavioral functioning outcomes differed. Findings have meaningful implications for efforts to accurately quantify the risk of adverse long-term neurobehavioral outcomes potentially associated with RHI.

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013012
Author(s):  
Madeline Uretsky ◽  
Sylvain Bouix ◽  
Ronald J. Killiany ◽  
Yorghos Tripodis ◽  
Brett Martin ◽  
...  

Background and Objectives:Late neuropathologies of repetitive head impacts from contact sports can include chronic traumatic encephalopathy (CTE) and white matter degeneration. White matter hyperintensities (WMH) on fluid attenuated inversion recovery (FLAIR) MRI scans are often viewed as microvascular disease from vascular risk, but might have unique underlying pathologies and risk factors in the setting of repetitive head impacts. We investigated the neuropathological correlates of antemortem WMH in brain donors exposed to repetitive head impacts. The association between WMH, and repetitive head impact exposure and informant-reported cognitive and daily function were tested.Methods:This imaging-pathological correlation study included symptomatic deceased men exposed to repetitive head impacts. Donors had antemortem FLAIR scans from medical records and were without evidence of CNS neoplasm, large vessel infarcts, hemorrhage, and/or encephalomalacia. WMH were quantified using log-transformed values for total lesion volume (TLV), calculated using the lesion prediction algorithm from the Lesion Segmentation Toolbox. Neuropathological assessments included semi-quantitative ratings of white matter rarefaction, cerebrovascular disease, p-tau severity (CTE stage, dorsolateral frontal cortex), and Aβ. Among football players, years of play was a proxy for repetitive head impact exposure. Retrospective informant-reported cognitive and daily function were assessed using the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ). Regression models controlled for demographics, diabetes, hypertension, and MRI resolution. Statistical significance was defined as p<0.05.Results:The sample included 75 donors: 67 football players and 8 non-football contact sport athletes and/or military veterans. Dementia was the most common MRI indication (64%). Fifty-three (70.7%) had CTE at autopsy. Log-TLV was associated with white matter rarefaction (OR=2.32, 95% CI=1.03,5.24, p=0.04), arteriolosclerosis (OR=2.38, 95% CI=1.02,5.52, p=0.04), CTE stage (OR=2.58, 95% CI=1.17,5.71, p=0.02), and dorsolateral frontal p-tau severity (OR=3.03, 95% CI=1.32,6.97, p=0.01). There was no association with Aβ. More years of football play was associated with log-TLV (b=0.04, 95% CI=0.01,0.06, p=0.01). Greater log-TLV correlated with higher FAQ (unstandardized beta=4.94, 95% CI=0.42,8.57, p=0.03) and CDS scores (unstandardized beta=15.35, 95% CI=-0.27,30.97, p=0.05).Discussion:WMH might capture long-term white matter pathologies from repetitive head impacts, including those from white matter rarefaction and p-tau, in addition to microvascular disease. Prospective imaging-pathological correlation studies are needed.Classification of Evidence:This study provides Class IV evidence of associations between FLAIR white matter hyperintensities, and neuropathological changes (white matter rarefaction, arteriolosclerosis, p-tau accumulation), years of American football play, and reported cognitive symptoms in symptomatic brain donors exposed to repetitive head impacts.


2016 ◽  
Vol 18 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Doug A. King ◽  
Patria A. Hume ◽  
Conor Gissane ◽  
Trevor N. Clark

OBJECTIVE Direct impact with the head and the inertial loading of the head have been postulated as major mechanisms of head-related injuries, such as concussion. METHODS This descriptive observational study was conducted to quantify the head impact acceleration characteristics in under-9-year-old junior rugby union players in New Zealand. The impact magnitude, frequency, and location were collected with a wireless head impact sensor that was worn by 14 junior rugby players who participated in 4 matches. RESULTS A total of 721 impacts > 10g were recorded. The median (interquartile range [IQR]) number of impacts per player was 46 (IQR 37–58), resulting in 10 (IQR 4–18) impacts to the head per player per match. The median impact magnitudes recorded were 15g (IQR 12g–21g) for linear acceleration and 2296 rad/sec2 (IQR 1352–4152 rad/sec2) for rotational acceleration. CONCLUSIONS There were 121 impacts (16.8%) above the rotational injury risk limit and 1 (0.1%) impact above the linear injury risk limit. The acceleration magnitude and number of head impacts in junior rugby union players were higher than those previously reported in similar age-group sports participants. The median linear acceleration for the under-9-year-old rugby players were similar to 7- to 8-year-old American football players, but lower than 9- to 12-year-old youth American football players. The median rotational accelerations measured were higher than the median and 95th percentiles in youth, high school, and collegiate American football players.


Author(s):  
Ashley E. Evans ◽  
Madeline Curtis ◽  
Marguerite (Meg) Montjoy ◽  
Erica Beidler

Context: The rate of sport-related concussion diagnosis has significantly increased in recent years, which has created a need for injury prevention initiatives. There have been efforts put forth by researchers and American football organizations to teach athletes how to tackle properly in order to decrease the number of subconcussive head impacts and concussions. Clinical Question: Does the implementation of a behavioral tackling intervention decrease the head impact frequency in American football players? Clinical Bottom Line: There is moderate SORT Level B evidence to support the use of behavioral tackling interventions as a means for reducing head impact frequency in football athletes. All four included studies found a significant reduction in head impacts following a behavioral tackling intervention with study findings ranging from a 26–33% reduction in impact frequency. These findings were consistent in youth, high school, and college football players and for different types of behavioral tackling interventions. Therefore, these results indicate that behavioral tackling interventions have the potential to reduce the number of head impacts sustained by American football players, which may ultimately lead to a reduction in concussion occurrence as well.


2017 ◽  
Author(s):  
Calvin Kuo ◽  
Lyndia Wu ◽  
Jesus Loza ◽  
Daniel Senif ◽  
Scott C. Anderson ◽  
...  

AbstractPrevious research has sought to quantify head impact exposure using wearable kinematic sensors. However, many sensors suffer from poor accuracy in estimating impact kinematics and count, motivating the need for additional independent impact exposure quantification for comparison. Here, we equipped seven collegiate American football players with instrumented mouthguards, and video recorded practices and games to compare video-based and sensor-based exposure rates and impact location distributions. Over 50 player-hours, we identified 271 helmet contact periods in video, while the instrumented mouthguard sensor recorded 2,032 discrete head impacts. Matching video and mouthguard real-time stamps yielded 193 video-identified helmet contact periods and 217 sensor-recorded impacts. To compare impact locations, we binned matched impacts into frontal, rear, side, oblique, and top locations based on video observations and sensor kinematics. While both video-based and sensor-based methods found similar location distributions, our best method utilizing integrated linear and angular position only correctly predicted 81 of 217 impacts. Finally, based on the activity timeline from video assessment, we also developed a new exposure metric unique to American football quantifying number of cross-verified sensor impacts per player-play. We found significantly higher exposure during games (0.35, 95% CI: 0.29-0.42) than practices (0.20, 95% CI: 0.17-0.23) (p<0.05). In the traditional impacts per player-hour metric, we observed higher exposure during practices (4.7) than games (3.7) due to increased player activity in practices. Thus, our exposure metric accounts for variability in on-field participation. While both video-based and sensor-based exposure datasets have limitations, they can complement one another to provide more confidence in exposure statistics.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S6.3-S7
Author(s):  
Jaclyn Caccese ◽  
Zac Houck ◽  
Thomas Kaminski ◽  
James Clugston ◽  
Grant Iverson ◽  
...  

ObjectiveTo examine the association between estimated age of first exposure (eAFE) to American football and clinical measures throughout recovery following concussion.BackgroundIn collegiate football players, we reported no association between eAFE and baseline neurocognitive function. It is possible that neurocognitive deficits from earlier eAFE to American football, if present, are sufficiently compensated for in otherwise healthy individuals, but when faced with concussion, earlier eAFE may associate with longer symptom recovery, worse cognitive performance, or greater psychological distress.Design/MethodsParticipants were recruited as part of the NCAA–DoD Concussion Assessment, Research and Education (CARE) Consortium. There were 340 NCAA football players (age = 18.9 ± 1.4 years) who were evaluated 24–48 hours following concussion and had valid baseline data and 360 (age = 19.0 ± 1.3 years) who were evaluated at the time they were asymptomatic and had valid baseline data. Participants sustained a medically-diagnosed concussion between baseline testing and post-concussion assessments. Outcome measures included the number of days until asymptomatic, Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) composite scores, Brief Symptom Inventory 18 (BSI-18) sub-scores, and Hospital Anxiety and Depression Scale (HADS) scores. The eAFE was defined as the participant’s age at the time of assessment minus the self-reported number of years playing football.ResultsResults of generalized linear modeling suggested that younger eAFE was only associated with lower (better) BSI-18 Somatization (estimate = 0.046, p = 0.046, CI = 0.001–0.091) and BSI-18 Anxiety sub-scores (estimate = 0.053, p = 0.039, CI = 0.003–0.104) at 24–48 hours. The eAFE was not associated with days until asymptomatic, ImPACT composite scores, HADS scores, or other BSI-18 sub-scores.ConclusionsEarlier eAFE to football was not associated with longer symptom recovery, worse cognitive performance, or greater psychological distress following concussion. Longer duration of exposure to football during childhood and adolescence appears to be unrelated to clinical recovery following concussion.


2017 ◽  
Vol 13 (7) ◽  
pp. P1469-P1470
Author(s):  
Jesse Mez ◽  
Daniel H. Daneshvar ◽  
Bobak Abdolmohammadi ◽  
Patrick T. Kiernan ◽  
Michael L. Alosco ◽  
...  

Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S1.3-S2
Author(s):  
Jillian Urban ◽  
Mirellie Kelley ◽  
Mark Espeland ◽  
Elizabeth Davenport ◽  
Christopher T. Whitlow ◽  
...  

Sport-related head impacts are of increasing concern as early evidence has demonstrated a relationship between subconcussive head impact exposure (HIE) experienced in contact sports, such as football, and changes in pre-to post-season imaging and cognitive measures. Cumulative HIE is often measured with a single number that amounts to the total exposure measured over the season and does not give any indication as to how the exposure was accumulated, nor how it varies during the season. Therefore, the objective of this study was to compare HIE during preseason, the first and second halves of the regular season, and playoffs in a sample of youth football players (n = 119, ages 9–13). Athletes were divided into 1 of 4 exposure groups based on quartiles computed from the distribution of risk-weighted cumulative exposure (RWECP). The mean 95th percentile linear and rotational accelerations and impacts per session in practices and games were compared across 4 exposure groups and time frames using mixed effects models. Within games, the sample mean 95th percentile linear and rotational accelerations ranged from 47.2 g and 2,331.3 rad/s2 during preseason to 52.1 g and 2,533.4 rad/s2 during the second half of regular season. Mean impacts per practice increased from preseason to the second half of regular season and declined into playoffs among all exposure groups; however, the variation between time frames was not greater than 2 impacts per practice. Time of season had a significant effect on mean 95th percentile linear and rotational acceleration in games (both p = 0.01) but not on practice accelerations or impacts/session. Mean 95th percentile accelerations for games showed significant interaction effects between exposure group and season segment (linear p = 0.05 and rotational p = 0.04). The results of this study improve our understanding of in-season variations in youth football HIE and may inform important opportunities for future interventions.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S10.1-S10
Author(s):  
Adam Bartsch ◽  
Edward Benzel ◽  
Sergey Samorezov ◽  
Vincent Miele

ObjectiveThe aim of this study was to investigate head impact doses in American football. We analyzed time-synchronized video and data collected during n = 445 player-games of American football resulting in 2851video-verified impacts. Cases where a player sustained impacts and on video was demonstrably witnessed to meet the NFL’s “No-go” criteria were analyzed in-depth.BackgroundIn 2011, after reviewing scalar on-field kinematics data leading concussion clinicians concluded “Recent studies suggest that a concussive injury threshold is elusive, and may, in fact, be irrelevant when predicting the clinical outcome”.1 It is likely that higher fidelity estimates of spatial and temporal impact parameters will clarify the currently unclear impact dose-response relationship.Design/MethodsA total of 2851 video-verified head impacts were identified from 445 player-games. Each event was time-synchronized to video. Any events collected when the athlete was not being impacted in the head were discarded. The remaining true positive events were scrutinized based on published methods to confirm a head impact occurred in the video and the computed motion was physically realistic and matched the video.ResultsWe found a median of 5 video-verified head impacts per player-game, which is far fewer than published studies without video verification.11 For the four players with “No-go” impacts, all were to the side/rear. Coronal plane impact sensitivity has been a hypothesized clinical injury mechanism12 and our results support that hypothesis.ConclusionsWe did not see high PLA/PAA impacts without obvious player “No-go” observations. This finding disagrees with other studies that have reported high PLA/PAA impacts without any demonstrable “No-go” observations13. High energy impacts to the side and rear of the head are more damaging than similar magnitude impacts to the forehead. Armed with this knowledge, clinicians should have more fidelity in their understanding of real-time impact location and severity, and how it relates to athlete concussion risk.


Sign in / Sign up

Export Citation Format

Share Document