Maximising net benefits through biodiversity as a primary land use

1999 ◽  
Vol 4 (2) ◽  
pp. 203-236 ◽  
Author(s):  
BRIAN WALKER

In many developing regions of the world conventional agriculture is failing to meet the needs of people and at the same time is becoming progressively less ecologically sustainable. It is proposed that in a number of these regions, both overall economic development and the welfare of the inhabitants would improve if the primary form of land use was based on multiple use of those regions' natural biological resources, rather than continuing the practice of replacing or displacing them with marginal forms of agriculture. Testing this proposition, and then (if appropriate) effecting it, requires answers to a number of ecological, economic and management questions, in particular to do with: identifying those regions where biodiversity use has high potential the appropriate spatial scales for planning and management compatible combinations of different types of resource use ecological and economic trade-offs between different resource use enterprises how to arrive at the most efficient form of resource use sustainable levels of biodiversity harvest resource use decisions in relation to ecological drivers (such as climate and fire) institutional and regulatory structures that dictate current resource use. These questions, it is proposed, should form the basis of an international 'virtual' institute, composed of three Biodiversity Centres, one each in Latin America, southern Africa and Southeast Asia. Examples of multiple use, such as of wildlife in southern Africa, are used to illustrate the potential, and the management scale and other issues involved. If the development of this form of land use is to succeed, it will require technical and management advice and, in many cases, removal of 'perverse incentives' that prevent a change to the more economically and ecologically sustainable form of land use. From the beginning, the emphasis in the proposed centres would be on collaborative work involving governments, landowners and resource-based industries.

2017 ◽  
Vol 74 (7) ◽  
pp. 1990-2003 ◽  
Author(s):  
David C. Smith ◽  
Elizabeth A. Fulton ◽  
Petrina Apfel ◽  
Ian D. Cresswell ◽  
Bronwyn M. Gillanders ◽  
...  

Abstract Ecosystem-based management (EBM) is now widely accepted as the best means of managing the complex interactions in marine systems. However, progress towards implementing and operationalizing it has been slow. We take a pragmatic approach to EBM. Our simple definition is balancing human activities and environmental stewardship in a multiple-use context. In this paper, we present case studies on the development and implementation of EBM in Australia. The case studies (Australia’s Ocean Policy, the Great Barrier Reef, New South Wales (NSW) marine estate, Gladstone Harbour, and South Australia and Spencer Gulf) span different spatial scales, from national to regional to local. They also cover different levels of governance or legislated mandate. We identify the key learnings, necessary components and future needs to support better implementation. These include requirements for clearly identified needs and objectives, stakeholder ownership, well defined governance frameworks, and scientific tools to deal with conflicts and trade-offs. Without all these components, multi-sector management will be difficult and there will be a tendency to maintain a focus on single sectors. While the need to manage individual sectors remains important and is often challenging, this alone will not necessarily ensure sustainable management of marine systems confronted by increasing cumulative impacts.


2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


Author(s):  
Lisa Best ◽  
Kimberley Fung-Loy ◽  
Nafiesa Ilahibaks ◽  
Sara O. I. Ramirez-Gomez ◽  
Erika N. Speelman

AbstractNowadays, tropical forest landscapes are commonly characterized by a multitude of interacting institutions and actors with competing land-use interests. In these settings, indigenous and tribal communities are often marginalized in landscape-level decision making. Inclusive landscape governance inherently integrates diverse knowledge systems, including those of indigenous and tribal communities. Increasingly, geo-information tools are recognized as appropriate tools to integrate diverse interests and legitimize the voices, values, and knowledge of indigenous and tribal communities in landscape governance. In this paper, we present the contribution of the integrated application of three participatory geo-information tools to inclusive landscape governance in the Upper Suriname River Basin in Suriname: (i) Participatory 3-Dimensional Modelling, (ii) the Trade-off! game, and (iii) participatory scenario planning. The participatory 3-dimensional modelling enabled easy participation of community members, documentation of traditional, tacit knowledge and social learning. The Trade-off! game stimulated capacity building and understanding of land-use trade-offs. The participatory scenario planning exercise helped landscape actors to reflect on their own and others’ desired futures while building consensus. Our results emphasize the importance of systematically considering tool attributes and key factors, such as facilitation, for participatory geo-information tools to be optimally used and fit with local contexts. The results also show how combining the tools helped to build momentum and led to diverse yet complementary insights, thereby demonstrating the benefits of integrating multiple tools to address inclusive landscape governance issues.


2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Kyle D. Woodward ◽  
Narcisa G. Pricope ◽  
Forrest R. Stevens ◽  
Andrea E. Gaughan ◽  
Nicholas E. Kolarik ◽  
...  

Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


2012 ◽  
Vol 26 (5) ◽  
pp. 883-893 ◽  
Author(s):  
VAN BUTSIC ◽  
VOLKER C. RADELOFF ◽  
TOBIAS KUEMMERLE ◽  
ANNA M. PIDGEON

2016 ◽  
Vol 122 ◽  
pp. 111-120 ◽  
Author(s):  
Stephan Klasen ◽  
Katrin M. Meyer ◽  
Claudia Dislich ◽  
Michael Euler ◽  
Heiko Faust ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document