scholarly journals A cross-sectional research of iodine status of pregnant women in Chongqing, south-west China

2020 ◽  
Vol 23 (5) ◽  
pp. 769-775 ◽  
Author(s):  
Ning Yao ◽  
Chunbei Zhou ◽  
Jun Xie ◽  
Shuang Zhou

AbstractObjective:To investigate whether implementation of a universal salt iodization (USI) programme has sufficient effects on pregnant women in Chongqing, the present study evaluated the iodine nutritional status of pregnant women living in Chongqing by spot urinary iodine concentration (UIC), to provide scientific suggestions to better meet the specific iodine needs of this vulnerable group.Design:Cross-sectional design.Setting:A random spot urine sample and household table salt sample were provided by each participant.Participants:A total of 2607 pregnant women from twenty-six of thirty-nine districts/counties in Chongqing participated.Results:The overall median UIC of pregnant women was 171·80 μg/l (interquartile range (IQR) = 113·85–247·00 μg/l) and 40·97 % (n 1057) of participants were iodine insufficient. The median iodine in table salt samples was 25·40 mg/kg (IQR = 23·10–28·30 mg/kg); 93·26 % (n 2406) of samples examined were found to be adequately iodized. Iodine nutritional status was not significantly different according to table salt iodization category. Trimester was identified to be statistically associated with UIC (P < 0·01). Seven districts/counties had median UIC below 150 μg/l and one district had median UIC of 277·40 μg/l.Conclusions:The USI programme in Chongqing prevents iodine deficiency generally, but does not maintain iodine status within adequate and recommended ranges throughout pregnancy. Usage of non-iodized or unqualified iodized salt and the slight change of dietary habits of iodized salt in Chongqing may present a substantial challenge to fight iodine-deficiency disorders; more efforts are needed to ensure adequate iodine intake during pregnancy besides the USI programme.

2019 ◽  
Vol 59 (6) ◽  
pp. 2535-2545 ◽  
Author(s):  
Sofia Manousou ◽  
Maria Andersson ◽  
Robert Eggertsen ◽  
Sandra Hunziker ◽  
Lena Hulthén ◽  
...  

Abstract Purpose Voluntary salt iodization at 50 mg/kg salt ensures adequate iodine nutrition in Swedish school-aged children, but iodine status in pregnant women is uncertain. Methods We conducted a cross-sectional national study of 743 pregnant women, at median gestational age of 23 weeks (IQR 9, 38), recruited from maternal health care centers. We measured: urinary iodine concentration (UIC) and urinary creatinine concentration in spot urine samples; thyroglobulin (Tg), thyroid-stimulating hormone (TSH), and total thyroxine (tT4) on dried blood spots (DBS); and thyreoperoxidase antibodies in serum samples. Data on dietary supplement use were obtained, and women were classified as supplement users (consuming multivitamins containing ≥ 150 µg iodine/day) and non-supplement users (no supplements or < 150 µg iodine/day from supplements). Results Overall median UIC [bootstrapped 95% confidence interval (CI)] was 101 µg/L (95, 108; n = 737): 149 µg/L (132, 164) in supplement users (n = 253) and 85 µg/L (79, 92) in non-supplement users (n = 440) (p < 0.001). Overall geometric mean DBS-Tg (95% CI) was 22.1 μg/L (20.8, 23.5; n = 675) and the prevalence of elevated DBS-Tg was 19%. DBS-Tg was lower in supplement users (n = 229) than in non-supplement users (n = 405) (19.1 vs 24.4 μg/L, p < 0.001). DBS-TSH, DBS-tT4, and S-TPOab positivity did not differ between the two groups. Conclusions Pregnant women in Sweden have inadequate iodine nutrition. Women not taking iodine supplements containing ≥ 150 µg iodine/day are affected by mild iodine deficiency and are at higher risk for increased thyroid activity, while maintaining euthyroidism. Iodine intake should be improved in women both before and after conception by promotion of iodized salt instead of non-iodized salt. We urge regular monitoring of iodine status in the general Swedish population, as well as in risk groups.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haji Kedir ◽  
Yemane Berhane ◽  
Alemayehu Worku

Background.Iodine deficiency in pregnancy is a worldwide problem. This study aimed to assess prevalence and predictors of subclinical iodine deficiency among pregnant women in Haramaya district, eastern Ethiopia.Methods.A cross-sectional, community-based study was conducted on 435 pregnant women existing in ten randomly selected rural kebeles (kebele is the smallest administrative unit in Ethiopia). Data on the study subjects’ background characteristics, dietary habits, and gynecological/obstetric histories were collected via a structured questionnaire. UIC of <150 μg/L defined subclinical iodine deficiency. Data were analyzed by Stata 11. A multivariable logistic regression was used to identify the predictors of subclinical iodine deficiency.Results.The median urinary iodine concentration (MUIC) was 58.1 μg/L and 82.8% of the women who had subclinical iodine deficiency. The risk of subclinical iodine deficiency was reduced by the use of iodized salt (AOR = 0.13) and by intake of milk twice a month or more (AOR = 0.50), but it was increased by maternal illiteracy (AOR = 3.52).Conclusion.Iodine nutritional status of the pregnant women was poor. This shows that women and their children are exposed to iodine deficiency and its adverse effects. Thus, they need urgent supplementation with iodine and improved access to and intake of iodized salt and milk during pregnancy.


2020 ◽  
Vol 26 (2) ◽  
pp. 63-69
Author(s):  
Scrinic Olesea ◽  
Delia Corina Elena ◽  
Toma Geanina Mirela ◽  
Circo Eduard

Abstract Objective: Assessment of iodine nutritional status in pregnant women in the perimarine area of Romania, a region without iodine deficiency. Adequate iodine intake is the main source for normal thyroid function, ensuring the need for maternal thyroid hormones during pregnancy, but also for the development and growth of children in the fetal and postpartum period. Material and method: Prospective study performed on 74 pregnant women in the first 2 trimesters of pregnancy, originating from the perimarin area. The following indicators of iodine status were analyzed: urinary iodine concentration (UIC), the ratio between urinary iodine concentration and urinary creatinine (UIC/UCr), the prevalence of maternal goiter and the value of neonatal TSH (thyroid stimulating hormone). Results: The mean gestational age was 11 weeks. The ways of iodine intake are: iodized salt - 59.4%, iodized salt and iodine supplements- 23%, only iodine supplements -10.8% and 6.8% consume only non-iodized salt. The median of UIC was 133.03 mcg/l considered insufficient iodine intake (normal in pregnancy UIC >150 mcg/l), but the adjustment of UIC to urinary creatinine reveals a median of 152.83 mcg/g, a value that reflects an adequate iodine intake. The prevalence of goiter was 25.6% characteristic for a moderate iodine deficiency. The prevalence of neonatal TSH >5 mIU/L was registered in 18.8% characteristic of mild iodine deficiency. Conclusions: Monitoring of the iodine nutritional status is recommended for the prevention of disorders due to iodine deficiency under the conditions of universal salt iodization. Perimarine areas considered sufficient in iodine may show variations in iodine status in subpopulations under certain physiological conditions, such as pregnancy. An indicator of iodine status of the population is UIC, but the UIC/UCr ratio may be a more optimal indicator for pregnant women, to avoid possible overestimated results of iodine deficiency in pregnancy.


2018 ◽  
Vol 7 (5) ◽  
pp. 762-767 ◽  
Author(s):  
Verônica Carneiro Borges Mioto ◽  
Ana Carolina de Castro Nassif Gomes Monteiro ◽  
Rosalinda Yossie Asato de Camargo ◽  
Andréia Rodrigues Borel ◽  
Regina Maria Catarino ◽  
...  

Objectives Iodine deficiency during pregnancy is associated with obstetric and neonatal adverse outcomes. Serum thyroglobulin (sTg) and thyroid volume (TV) are optional tools to urinary iodine concentration (UIC) for defining iodine status. This cross-sectional study aims to evaluate the iodine status of pregnant women living in iodine-adequate area by spot UIC and correlation with sTg, TV and thyroid function. Methods Two hundred and seventy-three pregnant women were evaluated at three trimesters. All had no previous thyroid disease, no iodine supplementation and negative thyroperoxidase and thyroglobulin antibodies. Thyroid function and sTg were measured using electrochemiluminescence immunoassays. TV was determined by ultrasonography; UIC was determined using a modified Sandell–Kolthoff method. Results Median UIC was 146 µg/L, being 52% iodine deficient and only 4% excessive. TSH values were 1.50 ± 0.92, 1.50 ± 0.92 and 1.91 ± 0.96 mIU/L, respectively, in each trimester (P = 0.001). sTg did not change significantly during trimesters with median 11.2 ng/mL and only 3.3% had above 40 ng/mL. Mean TV was 9.3 ± 3.4 mL, which positively correlated with body mass index, but not with sTg. Only 4.5% presented with goitre. When pregnant women were categorized as iodine deficient (UIC < 150 µg/L), adequate (≥150 and <250 µg/L) and excessive (≥250 µg/L), sTg, thyroid hormones and TV at each trimester showed no statistical differences. Conclusions Iodine deficiency was detected frequently in pregnant women living in iodine-adequate area. sTg concentration and TV did not correlate to UIC. Our observation also demonstrated that the Brazilian salt-iodization programme prevents deficiency, but does not maintain iodine status within adequate and recommended ranges for pregnant women.


Author(s):  
Spriha Rao ◽  
Gurudayal Singh Toteja ◽  
Neena Bhatia ◽  
Supriya Dwivedi ◽  
Zaozianlungliu Gonmei ◽  
...  

Objectives: The present study was carried out to determine the iodine nutrition status among pregnant women in slums of West Delhi.Methods: A community-based cross-sectional study was carried out among the third-trimester pregnant women residing in urban slums of West Delhi. Urinary iodine concentration was estimated using ammonium persulfate method, and salt iodine was estimated using iodometric titration.Results: Of the total 180 pregnant women, 70.6% were consuming adequately iodized salt (iodine levels ≥15 ppm). Median urinary iodine level for the pregnant women was 147.5 μg/L indicating iodine deficiency among this group. A total of 51.1% of women had urinary iodine levels <150 μg/L.Conclusion: Pregnant women belonging to slum community from Delhi have a suboptimal iodine status. Further, the proportion of women consuming iodized salt is less than the national average indicating the need to educate these women about the importance of iodine during pregnancy.


2012 ◽  
Vol 109 (12) ◽  
pp. 2276-2284 ◽  
Author(s):  
Stefanie Vandevijvere ◽  
Sihame Amsalkhir ◽  
Ahmed Bensouda Mourri ◽  
Herman Van Oyen ◽  
Rodrigo Moreno-Reyes

Low iodine intake during pregnancy may cause thyroid dysfunction in pregnant women and their newborn. In the present study, iodine status among a nation-wide representative sample of Belgian pregnant women in the first and third trimester of pregnancy was determined, and determinants of iodine status were assessed 1 year after the introduction of bread fortified with iodised salt. The women were selected according to a multistage proportionate-to-size sampling design. Urine samples were collected and a general questionnaire was completed face to face with the study nurse. The median urinary iodine concentration (UIC) among pregnant women (n1311) was 124·1 μg/l and 122·6 μg/g creatinine when corrected for urinary creatinine. The median UIC in the first trimester (118·3 μg/l) was significantly lower than that in the third trimester (131·0 μg/l) but significantly higher than among non-pregnant women (84·8 μg/l). Iodine-containing supplement intake was reported by 60·8 % of the women and 57·4 % of the women took this supplement daily. The risk of iodine deficiency was significantly higher in younger women, in women not taking iodine-containing supplements, with low consumption of milk and dairy drinks and during autumn. Women with a higher BMI had a higher risk of iodine deficiency but the risk was lower in women who reported alcohol consumption. The median UIC during pregnancy indicates iodine deficiency in Belgium and some women are at a higher risk of deficiency. The current low iodine intake in women of childbearing age precludes the correction of iodine deficiency in pregnant women supplemented with multivitamins containing 150 μg iodine as recommended.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yixuan Lin ◽  
Diqun Chen ◽  
Jiani Wu ◽  
Zhihui Chen

Abstract Background Universal salt iodization program was introduced to China to eliminate iodine deficiency disorders in 1995. In 2012, Fujian Province decreased the concentration of iodized table salt according to the national unified requirement. This study aimed to assess the effect on iodine status after the adjustment, providing evidence for further adjustment in Fujian Province. Methods Sampling units were selected by multistage cluster sampling method. In each sampling unit, table salt was collected from 30 households. A total of 2,471 people in 2009 and 4,806 people in 2017 provided urine samples and were included in this cross-sectional analysis. Median iodized salt concentration and median urine iodine concentration were present by median and interquartile range. Results Median iodized salt decreased from 29.8 mg/kg in 2009 to 23.9 mg/kg in 2017. The median urinary iodine concentrations for school-age children in 2017 in coastal urban area, non-coastal urban area, coastal rural area and non-coastal rural area were 163.6µg/L (interquartile range = 100.1–252.0µg/L), 198.9µg/L (interquartile range = 128.0-294.0µg/L), 181.8µg/L (interquartile range = 114.1–257.0µg/L) and 218.2µg/L (interquartile range = 148.1-306.5µg/L), respectively. The median urinary iodine concentrations for adults in 2017 in these areas were 151.1µg/L (interquartile range = 98.3-231.7µg/L), 168.7µg/L (interquartile range = 109.6–242.0µg/L), 167.7µg/L (interquartile range = 105.7-245.7µg/L) and 182.7µg/L (interquartile range = 117.1-258.9µg/L). The median urinary iodine concentrations for pregnant women in 2017 in these areas were 157.7µg/L (interquartile range = 106.9-223.8µg/L), 141.5µg/L (interquartile range = 97.7-207.6µg/L), 127.3µg/L (interquartile range = 90.0-184.5µg/L) and 144.8µg/L (interquartile range = 99.9-184.5µg/L). The median urinary iodine concentrations for lactating women in 2017 in these areas were 122.7µg/L (interquartile range = 84.1–172.0µg/L), 123.7µg/L (interquartile range = 70.7-184.7µg/L), 105.8µg/L (interquartile range = 67.1-152.3µg/L) and 110.2µg/L (interquartile range = 74.1-170.3µg/L). Conclusions The overall urinary iodine concentrations among school-age children, adults and lactating women dramatically decreased after implementing the new standard. Almost all of them were iodine adequate, suggesting we reached the expected aim of iodized salt adjustment. However, pregnant women were iodine insufficient after adjustment. Therefore, we should continue the surveillance of iodine status of populations and focus on the additional iodine supplement strategies for pregnant women.


2017 ◽  
Vol 39 (1) ◽  
pp. 49
Author(s):  
Djoko Kartono ◽  
Atmarita Atmarita ◽  
Abas B Jahari ◽  
Soekirman Soekirman ◽  
Doddy Izwardy

Iodine Deficiency Disorders (IDD) are the leading cause of goiter, cretinism, developmental delays and other health problems. Iodine deficiency is an important public health issue as it is a preventable cause of intellectual disability. While elimination of iodine deficiency is imperative, it should be noted that excessive intake of iodine can also lead to adverse health effects. This paper analyzed the iodine status using median urinary iodine concentration (MUIC) of school age children (SAC), women of reproductive age (WRA), and pregnant women (PW) who live in the same household from Riskesdas 2013. The total number of households included in the analysis was 13,811 households, from which 6,149 SAC (aged 6 – 12 years), 13,218 WRA (aged 15-49 years), and 578 PW (aged 15-49 years) were enumerated. The national MUIC of SAC, WRA and PWwas  in the normal range indicated that  the iodine status was adequate using WHO epidemiological criteria. Iodine status in some sub-populations indicated deficiency, however, in terms of geographic characteristics people who live in the urban has better iodine status compared to rural areas. Similarly, populations in richer economic quintiles had better iodine status. Only pregnant women in the 1st and 2nd quintile were deficient. Almost all regions in Indonesia showed the MUIC was in the normal adequate range, except NTT-NTB, Maluku-Papua, and East Java for pregnant women who tend to have lower MUIC (<150 µg/L). The status of iodized salt at the household was detected using both Rapid Test Kit/RTK as well as Titration. The result demonstrated a strong association between salt iodine level and iodine status. The MUIC for all three groups were lower when the iodine level in salt was lower, then increased when the levels of iodine content in salt increased. The iodine status of pregnant women consuming non-iodized salt was inadequate. The detrimental effect of iodine deficiency on the mental and physical development of children as well as on the women of reproductive age has been recognized. Indonesia still needs the salt iodization program to keep the iodine status in the normal range. In particular coverage with adequately iodized salt needs to be improved in order to improve the iodine status of pregnant women. For the prevention of Iodine disorders (insufficient), monitoring should be undertaken in regular basis to assess the MUIC, especially for pregnant women.


2015 ◽  
Vol 18 (16) ◽  
pp. 2990-2997 ◽  
Author(s):  
Ilze Konrade ◽  
Ieva Kalere ◽  
Ieva Strele ◽  
Marina Makrecka-Kuka ◽  
Anna Jekabsone ◽  
...  

AbstractObjectiveLow iodine intake during pregnancy may cause thyroid dysfunction, which results in inadequate fetal brain development. In the absence of a universal salt iodization programme, we conducted a nationwide survey of iodine deficiency in pregnant women in Latvia.DesignA countrywide twenty-cluster survey, with at least twenty women per cluster. Participants completed a questionnaire on dietary habits concerning iodine intake (n 739). Thyroid function (thyroid-stimulating hormone, free thyroxine and thyroperoxidase antibodies) was measured (n 550). Urinary iodine was measured using the ammonium persulfate method (n 696).SettingThe survey was performed in all regions of Latvia during the spring and autumn seasons in 2013.SubjectsPregnant women (n 829).ResultsThe median creatinine (Cr)-standardized urinary iodine concentration (UIC) was 80·8 (interquartile range (IQR) 46·1–130·6) µg/g Cr or 69·4 (IQR 53·9–92·6) µg/l during pregnancy, and 81 % of pregnant women had UIC levels below the WHO recommended range of 150–250 µg/g Cr. The UIC was lowest during the first trimester of pregnancy, 56·0 (IQR 36·4–100·6) µg/g Cr, reaching higher concentrations of 87·5 (IQR 46·4–141·7) µg/g Cr and 86·9 (IQR 53·8–140·6) µg/g Cr in the second and third trimesters, respectively. Women taking supplements containing ≥150 µg iodine (6·8 % of respondents) had non-significantly higher UIC than did women without supplementation (96·2 v. 80·3 µg/g Cr, respectively, P=NS). Thyroperoxidase antibody concentration did not correlate significantly with UIC: Spearman’s ρ=−0·012, P=0·78.ConclusionsThe median UIC indicates iodine deficiency in pregnant women in Latvia. Iodine supplementation (150 µg daily) and regular UIC monitoring should be suggested to overcome iodine deficiency and to reach the recommended levels without inducing autoimmune processes.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
David Larbi Simpong ◽  
Yaw Asante Awuku ◽  
Kenneth Kwame Kye-Amoah ◽  
Martin Tangnaa Morna ◽  
Prince Adoba ◽  
...  

Background. Iodine deficiency causes maternal hypothyroidism which can lead to growth, cognitive, and psychomotor deficit in neonates, infants, and children. This study examined the iodine status of pregnant women in a periurban setting in Ghana. Methods. This longitudinal study recruited 125 pregnant women by purposeful convenience sampling from the antenatal clinic of the Sefwi Wiawso municipal hospital in Ghana. Urinary iodine concentration (UIC) was estimated by the ammonium persulfate method at an estimated gestational age (EGA) of 11, 20, and 32 weeks. Demographic information, iodized salt usage, and other clinical information were collected using a questionnaire. Results. The prevalence of iodine deficiency among the pregnant women was 47.2% at EGA 11 and 60.8% at both EGA of 20 and 32, whereas only 0.8% of participants not using iodized salt had iodine sufficiency at EGA 32. 18.4%, 20%, and 24% of participants using iodized salt had iodine sufficiency at EGA 11, 20, and 32, respectively. Conclusion. A high prevalence of iodine deficiency was observed among our study cohort.


Sign in / Sign up

Export Citation Format

Share Document