A Working Model of a Fully Digital Academic High-Throughput Microscopy Facility

1998 ◽  
Vol 4 (S2) ◽  
pp. 72-73
Author(s):  
M. R. Dickson

The Electron Microscope Unit at the University has a good selection of microscopes: two tungsten SEMs, two FESEMs, a microprobe analysis system, a 125 kY TEM, a 200 kV TEM, an AFM, an FIB miller, a Zeiss Photomicroscope and a Leica Macroscope. We service around 300 clients’ projects a year in every field of experimental science and engineering, logging over 8,000 hrs of beam time annually.But funding constraints have always kept us short staffed and our laboratory has been working towards complete digital image capture for the past ten years to enhance our productivity. The perceived benefits of digitisation for us are:Photographic processing of negatives eliminated.Archiving of (bulky) photographic negatives eliminated.Need for special darkroom & graphics skills eliminatedResponsibility for archiving and indexing images devolved to individual usersResponsibility for image processing devolved to individual users.Rapid turnaround of images.Rapid sharing of results.

2007 ◽  
Vol 58 (6) ◽  
pp. 558 ◽  
Author(s):  
R. F. Park

Annual pathogenicity surveys of Puccinina graminis f. sp. tritici (Pgt), initiated at the University of Sydney in 1919, have continued without interruption to the present day. The population structure of Pgt over the past 85 years has been strongly influenced by exotic introductions in 1925 (race 126), 1954 (race 21), and 1969 (races 194 and 326), subsequent random mutations to virulence, and selection of genotypes with virulence matching resistance genes in cultivars. Pathotypes detected in Australia over the past 10 years trace back to either races 21, 194, or 326. Based on varietal resistance and pathogenic variability, previous workers identified 3 periods between 1919 and 1970: from 1919 to 1938, cultivars lacked effective resistance genes; from 1938 to 1964, cultivars released with single genes for resistance (Sr6, Sr11, Sr9b, Sr36, Sr17), and new pathotypes with corresponding virulences were detected; from 1965 to 1970, and beyond, cultivars with multiple resistance genes were deployed in many regions, significantly reducing yield losses. During this third phase, and until now, cultivars were protected by resistance genes Sr2, Sr9g, Sr12, Sr13, Sr17, Sr22, Sr24, Sr26, Sr30, Sr36, and Sr38, singly or more commonly in combinations. Overall inoculum levels and pathotype diversity in Pgt have declined in all wheat-growing regions since the mid 1970s, likely as a consequence of the release of cultivars with gene combinations. Despite the low levels of stem rust in Australia over the past 30 years, resistance is still a top priority in many breeding programs. The development of virulence for Sr38 in WA in 2001 was a timely reminder of the need for continued vigilance if the sustained genetic control of the past 30 years is to continue.


Author(s):  
Susan McCahan ◽  
Lisa Romkey

The Faculty of Applied Science and Engineering at the University of Toronto has been working through the development of a continuous curriculum improvement process for the past two years. The main group working on this is the Graduate Attributes Committee (GAC) which is made up of faculty representatives from each department. In this paper and presentation we will describe the process we have developed. In addition, we will show examples of the materials that the GAC has produced. Of particular interest are the extensive rubrics that have been developed that can be used as a starting point for professors tasked with assessing the learning outcomes identified for the Graduate Attributes. Faculty have begun to customize these generic rubrics for particular assignments, and examples will be shown of this work. The development process has resulted in reflection and discussion on our curriculum. The development process has also led to reflection on the difficulties involved in assessing the Graduate Attributes and compiling the data we collect. These issues will be explored briefly in the paper.


2000 ◽  
Vol 632 ◽  
Author(s):  
Thomas G. Stoebe ◽  
Darcy Clark ◽  
Rustum Roy

ABSTRACTA variety of educational resources are available in the area of materials science and engineering. These resources are widely dispersed and are often hard to find. Several efforts to collect and categorize the wide variety of educational modules, demonstrations, laboratories and texts have been launched in recent years, but none have been able to incorporate the vast majority of resources. The current effort is funded by NSF and has been collecting information from a variety of sources over the past year. It is being integrated with the Materials Education Library project that has been under way at the University of Michigan since 1997. These projects will result in a fully searchable database, published both on the world wide web and in a print catalog, with the first edition being available by summer 2000. The draft web site may be found at http://msewww.engin.umich.edu/MEL/; a permanent web site will be available by the end of 2000.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 738
Author(s):  
Hanshan Dong ◽  
Hongbiao Dong ◽  
Zushu Li

Following the past successful four events in Leicester (2010), Wuhan (2012), Oxford (2014) and Chongqing (2016), the 5th UK–China Steel Research Forum, in conjunction with the 16th Conference of Chinese Materials Association in the UK on Materials Science and Engineering, was held at the University of Birmingham, UK on 4–7 July 2018 [...]


1979 ◽  
Vol 46 ◽  
pp. 96-101
Author(s):  
J.A. Graham

During the past several years, a systematic search for novae in the Magellanic Clouds has been carried out at Cerro Tololo Inter-American Observatory. The Curtis Schmidt telescope, on loan to CTIO from the University of Michigan is used to obtain plates every two weeks during the observing season. An objective prism is used on the telescope. This provides additional low-dispersion spectroscopic information when a nova is discovered. The plates cover an area of 5°x5°. One plate is sufficient to cover the Small Magellanic Cloud and four are taken of the Large Magellanic Cloud with an overlap so that the central bar is included on each plate. The methods used in the search have been described by Graham and Araya (1971). In the CTIO survey, 8 novae have been discovered in the Large Cloud but none in the Small Cloud. The survey was not carried out in 1974 or 1976. During 1974, one nova was discovered in the Small Cloud by MacConnell and Sanduleak (1974).


Author(s):  
R. W. Cole ◽  
J. C. Kim

In recent years, non-human primates have become indispensable as experimental animals in many fields of biomedical research. Pharmaceutical and related industries alone use about 2000,000 primates a year. Respiratory mite infestations in lungs of old world monkeys are of particular concern because the resulting tissue damage can directly effect experimental results, especially in those studies involving the cardiopulmonary system. There has been increasing documentation of primate parasitology in the past twenty years.


Author(s):  
S.J.B. Reed

Characteristic fluorescenceThe theory of characteristic fluorescence corrections was first developed by Castaing. The same approach, with an improved expression for the relative primary x-ray intensities of the exciting and excited elements, was used by Reed, who also introduced some simplifications, which may be summarized as follows (with reference to K-K fluorescence, i.e. K radiation of element ‘B’ exciting K radiation of ‘A’):1.The exciting radiation is assumed to be monochromatic, consisting of the Kα line only (neglecting the Kβ line).2.Various parameters are lumped together in a single tabulated function J(A), which is assumed to be independent of B.3.For calculating the absorption of the emerging fluorescent radiation, the depth distribution of the primary radiation B is represented by a simple exponential.These approximations may no longer be justifiable given the much greater computing power now available. For example, the contribution of the Kβ line can easily be calculated separately.


Author(s):  
Kenneth C. Moore

The University of Iowa Central Electron Microscopy Research Facility(CEMRF) was established in 1981 to support all faculty, staff and students needing this technology. Initially the CEMRF was operated with one TEM, one SEM, three staff members and supported about 30 projects a year. During the past twelve years, the facility has replaced all instrumentation pre-dating 1981, and now includes 2 TEM's, 2 SEM's, 2 EDS systems, cryo-transfer specimen holders for both TEM and SEM, 2 parafin microtomes, 4 ultamicrotomes including cryoultramicrotomy, a Laser Scanning Confocal microscope, a research grade light microscope, an Ion Mill, film and print processing equipment, a rapid cryo-freezer, freeze substitution apparatus, a freeze-fracture/etching system, vacuum evaporators, sputter coaters, a plasma asher, and is currently evaluating scanning probe microscopes for acquisition. The facility presently consists of 10 staff members and supports over 150 projects annually from 44 departments in 5 Colleges and 10 industrial laboratories. One of the unique strengths of the CEMRF is that both Biomedical and Physical scientists use the facility.


Sign in / Sign up

Export Citation Format

Share Document