Energy Filtering Imaging Of Thick Biological Specimens With In-Column "Omega"-Filter Microscopes.

1998 ◽  
Vol 4 (S2) ◽  
pp. 394-395
Author(s):  
Mark H. Ellisman ◽  
G.Y. Fan ◽  
T. Honda ◽  
T. Kanayama ◽  
M. Kersker

Preliminary results were obtained from thick sections of biological specimens using 200 keV electron microscopes with an in-column “Omega” energy filter. Images of selectively stained specimens prepared by osmium impregnation of frog spinal ganglia, with thickness ranging from 0.5 μm to 2.5 μm, show drastic improvement in image quality with the use of the energy filter.Two instruments with Omega filters were used. One was a non-commercial research prototype at JEOL Ltd. equipped with a LaB6 gun and the other was a commercial instrument (JEM-2010FEF) with a field-emission gun, installed at Kyushu University. We found that, although the field-emission gun offered a brightness 2 to 3 orders of magnitude higher, the LaB6 gun was more suitable for studying thick specimens, primarily due to the higher beam current of the LaB6 gun.

2010 ◽  
Vol 16 (6) ◽  
pp. 821-830 ◽  
Author(s):  
Paula Horny ◽  
Eric Lifshin ◽  
Helen Campbell ◽  
Raynald Gauvin

AbstractQuantitative X-ray microanalysis of thick samples is usually performed by measuring the characteristic X-ray intensities of each element in a sample and in corresponding standards. The ratio of the measured intensities from the unknown material to that from the standard is related to the concentration using the ZAF or ϕ(ρz) equations. Under optimal conditions, accuracies approaching 1% are possible. However, all the experimental conditions must remain the same during the sample and standard measurements. This is not possible with cold field emission scanning electron microscopes (FE-SEMs) where beam current can fluctuate around 5% in its stable regime. Very little work has been done on variable beam current conditions (Griffin, B.J. & Nockolds, C.E., Scanning13, 307–312, 1991), and none relating to cold FE-SEM applications. To address this issue, a new method was developed using a single spectral measurement. It is similar in approach to the Cliff-Lorimer method developed for the analytical transmission electron microscope. However, corrections are made for X rays generated from thick specimens using the ratio of the characteristic X-ray intensities of two elements in the same material. The proposed method utilizes the ratio of the intensity of a characteristic X-ray normalized by the sum of X-ray intensities of all the elements measured for the sample, which should also reduce the amplitude of error propagation. Uncertainties in the physical parameters of X-ray generation are corrected using a calibration factor that must be previously acquired or calculated. As an example, when this method was applied to the calculation of the composition of Au-Cu National Institute of Standards and Technology standards measured with a cold field emission source SEM, relative accuracies better than 5% were obtained.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Author(s):  
J W Steeds

That the techniques of convergent beam electron diffraction (CBED) are now widely practised is evident, both from the way in which they feature in the sale of new transmission electron microscopes (TEMs) and from the frequency with which the results appear in the literature: new phases of high temperature superconductors is a case in point. The arrival of a new generation of TEMs operating with coherent sources at 200-300kV opens up a number of new possibilities.First, there is the possibility of quantitative work of very high accuracy. The small probe will essentially eliminate thickness or orientation averaging and this, together with efficient energy filtering by a doubly-dispersive electron energy loss spectrometer, will yield results of unsurpassed quality. The Bloch wave formulation of electron diffraction has proved itself an effective and efficient method of interpreting the data. The treatment of absorption in these calculations has recently been improved with the result that <100> HOLZ polarity determinations can now be performed on III-V and II-VI semiconductors.


Author(s):  
S. Lehner ◽  
H.E. Bauer ◽  
R. Wurster ◽  
H. Seiler

In order to compare different microanalytical techniques commercially available cation exchange membrane SC-1 (Stantech Inc, Palo Alto), was loaded with biologically relevant elements as Na, Mg, K, and Ca, respectively, each to its highest possible concentration, given by the number concentration of exchangeable binding sites (4 % wt. for Ca). Washing in distilled water, dehydration through a graded series of ethanol, infiltration and embedding in Spurr’s low viscosity epoxy resin was followed by thin sectioning. The thin sections (thickness of about 50 nm) were prepared on carbon foils and mounted on electron microscopical finder grids.The samples were analyzed with electron microprobe JXA 50A with transmitted electron device, EDX system TN 5400, and on line operating image processing system SEM-IPS, energy filtering electron microscope CEM 902 with EELS/ESI and Auger spectrometer 545 Perkin Elmer.With EDX, a beam current of some 10-10 A and a beam diameter of about 10 nm, a minimum-detectable mass of 10-20 g Ca seems within reach.


Author(s):  
James B. Pawley

Past: In 1960 Thornley published the first description of SEM studies carried out at low beam voltage (LVSEM, 1-5 kV). The aim was to reduce charging on insulators but increased contrast and difficulties with low beam current and frozen biological specimens were also noted. These disadvantages prevented widespread use of LVSEM except by a few enthusiasts such as Boyde. An exception was its use in connection with studies in which biological specimens were dissected in the SEM as this process destroyed the conducting films and produced charging unless LVSEM was used.In the 1980’s field emission (FE) SEM’s came into more common use. The high brightness and smaller energy spread characteristic of the FE-SEM’s greatly reduced the practical resolution penalty associated with LVSEM and the number of investigators taking advantage of the technique rapidly expanded; led by those studying semiconductors. In semiconductor research, the SEM is used to measure the line-width of the deposited metal conductors and of the features of the photo-resist used to form them. In addition, the SEM is used to measure the surface potentials of operating circuits with sub-micrometer resolution and on pico-second time scales. Because high beam voltages destroy semiconductors by injecting fixed charges into silicon oxide insulators, these studies must be performed using LVSEM where the beam does not penetrate so far.


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Alireza Nojeh

Carbon nanotubes have a host of properties that make them excellent candidates for electron emitters. A significant amount of research has been conducted on nanotube-based field-emitters over the past two decades, and they have been investigated for devices ranging from flat-panel displays to vacuum tubes and electron microscopes. Other electron emission mechanisms from carbon nanotubes, such as photoemission, secondary emission, and thermionic emission, have also been studied, although to a lesser degree than field-emission. This paper presents an overview of the topic, with emphasis on these less-explored mechanisms, although field-emission is also discussed. We will see that not only is electron emission from nanotubes promising for electron-source applications, but also its study could reveal unusual phenomena and open the door to new devices that are not directly related to electron beams.


1974 ◽  
Vol 14 (3) ◽  
pp. 505-521
Author(s):  
L. F. LACOUR ◽  
B. WELLS

With the use of the light and electron microscopes, the chromosomes of Fritillaria lanceolata and Scilla sibirica are shown to differ in respect of the heterochromatin they contain. In root meristems of the former, the heterochromatic regions (H-segments) were recognizable at all phases of the mitotic cycle by their slighter opacity to electrons than that of euchromatic parts. This was due both to less tight packing of the chromatin fibrils and lower opacity of the fibrils themselves, even though both had the same diameter, about 3 nm. In root tips of the Scilla, the heterochromatin was invariably of similar opacity to euchromatin and thus only recognizable at telophase and interphase as large chromocentres. The opacity to electrons in the heterochromatin of the 2 species, was at all times closely paralleled by the staining behaviour seen with the light microscope in sections (0.07-0.5 µm in thickness) stained with toluidine blue. The disparity in the Fritillaria, as seen in sections with the light microscope, in respect of the stainability of the hetero- and euchromatin, was masked in Feulgen squash preparations of root tips from plants grown at 18-20 °C; at metaphase by the thickness of the chromosomes and at interphase by the density of the chromocentres. When, on the other hand, the plants were grown for 4 days at 2 °C, the masking effect of thickness was circumvented in metaphase chromosomes by differential super-contraction in euchromatin. The implications of these findings in respect to previous interpretations of the differential reactivity of H-segments to low temperature, as well as the phenomenon of enhanced and reduced fluorescence in these segments with fluorochromes are discussed.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1243-1244 ◽  
Author(s):  
Raynald Gauvin ◽  
Steve Yue

The observation of microstructural features smaller than 300 nm is generally performed using Transmission Electron Microscopy (TEM) because conventional Scanning Electron Microscopes (SEM) do not have the resolution to image such small phases. Since the early 1990’s, a new generation of microscopes is now available on the market. These are the Field Emission Gun Scanning Electron Microscope with a virtual secondary electron detector. The field emission gun gives a higher brightness than those obtained using conventional electron filaments allowing enough electrons to be collected to operate the microscope with incident electron energy, E0, below 5 keV with probe diameter smaller than 5 nm. At 1 keV, the electron range is 60 nm in aluminum and 10 nm in iron (computed using the CASINO program). Since the electron beam diameter is smaller than 5 nm at 1 keV, the resolution of these microscopes becomes closer to that of TEM.


1999 ◽  
Vol 5 (S2) ◽  
pp. 646-647
Author(s):  
H.W. Mook ◽  
A.H.V. van Veen ◽  
P. Kruit

The energy resolution which can be attained in electron energy loss spectroscopy (EELS) is determined by the energy spread of the electron source. The energy width of a high brightness electron gun (typically 0.4 to 0.8 eV) blurs the energy spectrum. A pre-specimen energy filter or monochromator must be used to reduce the energy width of the beam below 0.1 eV to allow detailed EELS analysis of the electronic band structures in materials. The monochromator can not only improve EELS, but it is also capable of improving the spatial resolution in low voltage SEM, which is limited by the chromatic blur of the objective lens. A new type of monochromator the Fringe Field Monochromator has been designed and experiments in an ultra high vacuum setup show the monochromatisation of a Schottky Field Emission Gun.


Sign in / Sign up

Export Citation Format

Share Document