Facility Implementation and Comparative Performance Evaluation of Probe-Corrected TEM/STEM with Schottky and Cold Field Emission Illumination

2013 ◽  
Vol 19 (2) ◽  
pp. 487-495 ◽  
Author(s):  
Yan Xin ◽  
John Kynoch ◽  
Ke Han ◽  
Zhiyong Liang ◽  
Peter J. Lee ◽  
...  

AbstractWe report the installation and performance evaluation of a probe aberration-corrected high-resolution JEOL JEM-ARM200F transmission electron microscope (TEM). We provide details on construction of the room that enables us to obtain scanning transmission electron microscope (STEM) data without any evident distortions/noise from the external environment. The microscope routinely delivers expected performance. We show that the highest STEM spatial resolution and energy resolution achieved with this microscope are 0.078 nm and 0.34 eV, respectively. We report a direct comparative evaluation of the performance of this microscope with a Schottky thermal field-emission gun versus a cold field-emission gun. Cold field-emission illumination improves spatial resolution of the high current probe for analytical spectroscopy, the TEM information limit, and the electron energy resolution compared to the Schottky thermal field-emission source.

Author(s):  
Y. Kondo ◽  
T. Yoshioka ◽  
T. Oikawa ◽  
Y. Kokubo ◽  
M. Kersker

The energy filtered imaging technique has so far been carried out in a scanning transmission electron microscope (STEM) fitted with a sector type energy analyzer. The STEM has a disadvantage of low beam parallelity because it uses a convergent beam, while the conventional transmission electron microscope (CTEM) allows good phase contrast and diffraction contrast to be obtained because of the high parallelity of the beam, and allows also high resolution images to be obtained. The technique to obtain energy filtered CTEM images has thus far been carried out by a Castaing-Henry type filter or an Ω type filter. However, these filters have the disadvantage of lower energy resolution than conventional sector type energy analyzer at the present time. This paper reports energy filtered CTEM images of MgO smoke, obtained using a new scanning CTEM image technique and a high energy resolution sector type energy analyzer which can resolve bulk and surface plasmon energy.


Author(s):  
J.R. Banbury ◽  
U. R. Bance

A prototype field emission scanning transmission electron microscope has been constructed and is under further development at AEI Scientific Apparatus Limited.The field emission gun has a triode construction, with geometry such as to produce a divergent beam from a virtual source whose position remains substantially constant over a wide range of total accelerating voltages. The gun has been operated satisfactorily from below 10 kV to over 90 kV (upper limit set by power supplies), with the field emission diode voltage typically between 2 kV and 4 kV and total emission of a few microamps. Single-crystal tungsten tips of either (111) or (310) orientation are used, though (310) tips normally produce a superior probe current stability.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1138-1139
Author(s):  
I. Matsui ◽  
T. Katsuta ◽  
T. Kawasaki ◽  
S. Hayashi ◽  
T. Furutsu ◽  
...  

We have developed 100-kV, 200-kV, and 350-kV cold-field-emission transmission electron microscopes (FE-TEMs) successively up to this time. Using these instruments, we have been studying the magnetic structure of materials, high-resolution imaging by electron holography, and dynamic observation of the vortex in superconductors by Lorentz microscopy. To make more progress in our research, we need a better electron beam in terms of coherency, beam brightness, and penetration. Here, we report a new lMV-cold-field-emission transmission electron microscope we have developed. Historically, the pioneering projects on a lMV-field-emission scanning transmission electron microscope (FE-STEM) (Zeitler and Crewe, 1974) and a 1.6MV FE-STEM (Jouffrey et al., 1984) have been reported. In 1988, Maruse and Shimoyama obtained a lMV-field-emission beam using their 1.25MV-STEM connected to a field-emission gun. Since then, continuous improvements in beam brightness has been made.The target specifications of our 1 MV-cold-field-emission TEM (H-1000FT) are as follows: Acceleration voltage: 1MV, high-voltage stability :


Sign in / Sign up

Export Citation Format

Share Document