scholarly journals Applications of Low Voltage Field Emission Scanning Electron Microscopy (FE-SEM) for Characterization of Polyethersulfone/ Polyvinylpyrillidone (PES/PVP) Based Materials for Membrane Separations

2014 ◽  
Vol 20 (S3) ◽  
pp. 2100-2101 ◽  
Author(s):  
Pooja Bajaj ◽  
Albin Berzinis ◽  
Rachel Giessert ◽  
Carl Strom
2002 ◽  
Vol 8 (I1) ◽  
pp. 20-20

Topic: Characterization of Non-Conductive or Charging Materials by Microbeam AnalysisThe goal of this topical conference is to present the state of the art for materials characterization of non-conductive or charging materials using microbeam analysis. Examples of charging materials include polymeric materials, ceramic materials, and photoresist materials in the microelectronic industry. Also, the characterization of biological specimens will be covered because they are prone to problems related to charging. These materials are of great technological importance and their characterization is still a great challenge because they charge when analyzed with an electron beam. The techniques of microbeam analysis that will be considered are: X-ray Microanalysis in the Electron Microprobe, Low Voltage Scanning Electron Microscopy, Environmental Scanning Electron Microscopy, Analytical Electron Microscopy with Field Emission Transmission Electron Microscopy, and Focused Ion Beam Milling for specimen preparation. World experts will present papers on these topics. Papers from this topical conference will be published in a special issue of Microscopy & Microanalysis.


1998 ◽  
Vol 4 (S2) ◽  
pp. 814-815
Author(s):  
E.F. Osten ◽  
M.S. Smith

We are using the term "Industrial Polymers" to refer to polymers [plastics] that are produced by the ton or (in the case of films) by the mile. For example, in descending order of world-wide use (tonnage), the top eight of these polymers are polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), styrene polymers (including polystyrene - PS, and acrylonitrile-butadienestyrene/ styrene-acrylonitrile - ABS/SAN), polyesters (PETP), polyurethane (PU), phenolics and aminoplastics.Industrial polymers, which have been produced by the millions of tons for the last five decades and are of obvious social and economic importance, have been exhaustively characterized. Structural features which affect physical properties and indicate process variables have been studied by many techniques other than microscopy (x-ray diffraction, thermal analysis, rheology, chromatographies, etc.). Microscopy techniques for polymer characterization have been well documented. Our motivation to apply field emission (high resolution) scanning electron microscopy to the study of polymers is: (1) The application of low voltage, high resolution SEM to biological materials is well characterized.


2003 ◽  
Vol 9 (4) ◽  
pp. 330-335 ◽  
Author(s):  
Heide Schatten ◽  
L. David Sibley ◽  
Hans Ris

The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.


Author(s):  
V. K. Berry

The morphological characterization of any polymer blend plays an important part in the development of a new blend system because the properties of blends are dictated by phase morphology which is dependent upon the chemistry and the processing conditions. Light microscopy, scanning electron microscopy and transmission electron microscopy are the most commonly used microscopical techniques for morphological characterization. Transmission electron microscopy techniques provide the best resolution (≈ 0.3 nm) but are limited in the size of sample area and require elaborate sample preparation procedures. Surface charging and beam damage problems have been some of the drawbacks of conventional scanning electron microscopy with non-conducting materials like polymers.The use of low accelerating voltage scanning electron microscopy (LVSEM) in the characterization of polymers and other non-conducting materials is beginning to be recognized.


Sign in / Sign up

Export Citation Format

Share Document