scholarly journals Atomic-Resolution X-ray Analysis in Aberration-Corrected Scanning Transmission Electron Microscopes: Current Limits and Challenges toward Quantification

2014 ◽  
Vol 20 (S3) ◽  
pp. 2168-2169
Author(s):  
M. Watanabe
Microscopy ◽  
2021 ◽  
Author(s):  
M Watanabe ◽  
R F Egerton

Abstract X-ray analysis is one of the most robust approaches to extract quantitative information from various materials, and is widely used in various fields ever since Raimond Castaing established procedures to analyze electron-induced X-ray signals for materials characterization 70 years ago. The recent development of aberration-correction technology in a (scanning) transmission electron microscopes (S/TEM) offers refined electron probes below the Å level, making atomic-resolution X-ray analysis possible. In addition, the latest silicon drift detectors (SDDs) allow complex detector arrangements and new configurational designs to maximize the collection efficiency of X-ray signals, which make it feasible to acquire X-ray signals from single atoms. In this review paper, recent progress and advantages related to S/TEM-based X-ray analysis will be discussed: (1) progress in quantification for materials characterization including the recent applications to light element analysis, (2) progress in analytical spatial resolution for atomic-resolution analysis and (3) progress in analytical sensitivity toward single atom detection and analysis in materials. Both atomic resolution analysis and single atom analysis are evaluated theoretically through multislice-based calculation for electron propagation in oriented crystalline specimen in combination with X-ray spectrum simulation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiahan Sang ◽  
Andrew R. Lupini ◽  
Jilai Ding ◽  
Sergei V. Kalinin ◽  
Stephen Jesse ◽  
...  

Abstract Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.


2012 ◽  
Vol 18 (S2) ◽  
pp. 974-975 ◽  
Author(s):  
M. Watanabe ◽  
A. Yasuhara ◽  
E. Okunishi

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2010 ◽  
Vol 16 (S2) ◽  
pp. 760-761
Author(s):  
Y Kohno ◽  
N Shibata ◽  
H Sawada ◽  
SD Findlay ◽  
Y Kondo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document