scholarly journals Cutting Edge of Atomic Force Microscopy (AFM) of the Cell: From Live Cell Imaging to High-resolution Structural Analysis of Cytoskeletal Actin Filaments

2018 ◽  
Vol 24 (S1) ◽  
pp. 1354-1355
Author(s):  
Jiro Usukura ◽  
Eiji Usukura ◽  
Akihiro Narita ◽  
Akira Yagi ◽  
Nobuaki Sakai ◽  
...  
2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S154
Author(s):  
Kiyohiko Tateyama ◽  
Akira Yagi ◽  
Nobuaki Sakai ◽  
Yoshitsugu Uekusa ◽  
Yuka imaoka ◽  
...  

Langmuir ◽  
2015 ◽  
Vol 31 (24) ◽  
pp. 6807-6813 ◽  
Author(s):  
Jan Seifert ◽  
Johannes Rheinlaender ◽  
Pavel Novak ◽  
Yuri E. Korchev ◽  
Tilman E. Schäffer

2021 ◽  
Vol 134 (17) ◽  
Author(s):  
Yiming Yu ◽  
Shige H. Yoshimura

ABSTRACT Despite numerous recent developments in bioimaging techniques, nanoscale and live-cell imaging of the plasma membrane has been challenging because of the insufficient z-resolution of optical microscopes, as well as the lack of fluorescent probes to specifically label small membrane structures. High-speed atomic force microscopy (HS-AFM) is a powerful tool for visualising the dynamics of a specimen surface and is therefore suitable for observing plasma membrane dynamics. Recent developments in HS-AFM for live-cell imaging have enabled the visualisation of the plasma membrane and the network of cortical actin underneath the membrane in a living cell. Furthermore, correlative imaging with fluorescence microscopy allows for the direct visualisation of morphological changes of the plasma membrane together with the dynamic assembly or disassembly of proteins during the entire course of endocytosis in a living cell. Here, we review these recent advances in HS-AFM in order to analyse various cellular events occurring at the cell surface.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


2013 ◽  
Vol 19 (5) ◽  
pp. 1358-1363 ◽  
Author(s):  
Massimo Santacroce ◽  
Federica Daniele ◽  
Andrea Cremona ◽  
Diletta Scaccabarozzi ◽  
Michela Castagna ◽  
...  

AbstractXenopus laevis oocytes are an interesting model for the study of many developmental mechanisms because of their dimensions and the ease with which they can be manipulated. In addition, they are widely employed systems for the expression and functional study of heterologous proteins, which can be expressed with high efficiency on their plasma membrane. Here we applied atomic force microscopy (AFM) to the study of the plasma membrane of X. laevis oocytes. In particular, we developed and optimized a new sample preparation protocol, based on the purification of plasma membranes by ultracentrifugation on a sucrose gradient, to perform a high-resolution AFM imaging of X. laevis oocyte plasma membrane in physiological-like conditions. Reproducible AFM topographs allowed visualization and dimensional characterization of membrane patches, whose height corresponds to a single lipid bilayer, as well as the presence of nanometer structures embedded in the plasma membrane and identified as native membrane proteins. The described method appears to be an applicable tool for performing high-resolution AFM imaging of X. laevis oocyte plasma membrane in a physiological-like environment, thus opening promising perspectives for studying in situ cloned membrane proteins of relevant biomedical/pharmacological interest expressed in this biological system.


Sign in / Sign up

Export Citation Format

Share Document