0-Hecke algebras

1979 ◽  
Vol 27 (3) ◽  
pp. 337-357 ◽  
Author(s):  
P. N. Norton

AbstractThe structure of a 0-Hecke algebra H of type (W, R) over a field is examined. H has 2n distinct irreducible representations, where n = ∣R∣, all of which are one-dimensional, and correspond in a natural way with subsets of R. H can be written as a direct sum of 2n indecomposable left ideals, in a similar way to Solomon's (1968) decomposition of the underlying Coxeter group W.

2019 ◽  
Vol 18 (09) ◽  
pp. 1950173
Author(s):  
Max Murin ◽  
Seth Shelley-Abrahamson

The irreducible representations of full support in the rational Cherednik category [Formula: see text] attached to a Coxeter group [Formula: see text] are in bijection with the irreducible representations of an associated Iwahori–Hecke algebra. Recent work has shown that the irreducible representations in [Formula: see text] of arbitrary given support are similarly governed by certain generalized Hecke algebras. In this paper, we compute the parameters for these generalized Hecke algebras in the remaining previously unknown cases, corresponding to the parabolic subgroup [Formula: see text] in [Formula: see text] for [Formula: see text] and [Formula: see text].


Author(s):  
Takehiro Hasegawa ◽  
Hayato Saigo ◽  
Seiken Saito ◽  
Shingo Sugiyama

The subject of the present paper is an application of quantum probability to [Formula: see text]-adic objects. We give a quantum-probabilistic interpretation of the spherical Hecke algebra for [Formula: see text], where [Formula: see text] is a [Formula: see text]-adic field. As a byproduct, we obtain a new proof of the Fourier inversion formula for [Formula: see text].


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastiano Carpi ◽  
Simone Del Vecchio ◽  
Stefano Iovieno ◽  
Yoh Tanimoto

AbstractWe show that any positive energy projective unitary representation of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) extends to a strongly continuous projective unitary representation of the fractional Sobolev diffeomorphisms $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) for any real $$s>3$$ s > 3 , and in particular to $$C^k$$ C k -diffeomorphisms $$\mathrm{Diff}_+^k(S^1)$$ Diff + k ( S 1 ) with $$k\ge 4$$ k ≥ 4 . A similar result holds for the universal covering groups provided that the representation is assumed to be a direct sum of irreducibles. As an application we show that a conformal net of von Neumann algebras on $$S^1$$ S 1 is covariant with respect to $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) , $$s > 3$$ s > 3 . Moreover every direct sum of irreducible representations of a conformal net is also $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) -covariant.


1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


2019 ◽  
Vol 72 (1) ◽  
pp. 1-55
Author(s):  
Pramod N. Achar ◽  
Simon Riche ◽  
Cristian Vay

AbstractIn this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.


2002 ◽  
Vol 72 (1) ◽  
pp. 47-56 ◽  
Author(s):  
L. G. Sweet ◽  
J. A. Macdougall

AbstractAn algebra A is homogeneous if the automorphism group of A acts transitively on the one dimensional subspaces of A. Suppose A is a homogeneous algebra over an infinite field k. Let La denote left multiplication by any nonzero element a ∈ A. Several results are proved concerning the structure of A in terms of La. In particular, it is shown that A decomposes as the direct sum A = ker La Im La. These results are then successfully applied to the problem of classifying the infinite homogeneous algebras of small dimension.


2009 ◽  
Vol 52 (3) ◽  
pp. 653-677 ◽  
Author(s):  
Meinolf Geck

AbstractLet H be the generic Iwahori–Hecke algebra associated with a finite Coxeter group W. Recently, we have shown that H admits a natural cellular basis in the sense of Graham and Lehrer, provided that W is a Weyl group and all parameters of H are equal. The construction involves some data arising from the Kazhdan–Lusztig basis {Cw} of H and Lusztig's asymptotic ring J}. We attempt to study J and its representation theory from a new point of view. We show that J can be obtained in an entirely different fashion from the generic representations of H, without any reference to {Cw}. We then extend the construction of the cellular basis to the case where W is not crystallographic. Furthermore, if H is a multi-parameter algebra, we see that there always exists at least one cellular structure on H. Finally, the new construction of J may be extended to Hecke algebras associated with complex reflection groups.


Sign in / Sign up

Export Citation Format

Share Document