On panspermia and the survivability of micrometre-sized meteoroids within the Earth's atmosphere

2004 ◽  
Vol 3 (2) ◽  
pp. 151-156 ◽  
Author(s):  
S.G. Coulson

A prediction of panspermia is that organic material should be abundant throughout the universe. The recovery of micrometre-sized biotic particles at altitudes of around 40 km above the Earth is a key indicator of the validity of panspermia. A common criticism of experiments to capture atmospheric particles is that the particles could have originated from the Earth. Theoretical models of the variation of temperature with altitude above the Earth show that 10 μm diameter particles can withstand rapid deceleration without significant ablation. Experimental evidence shows that small particles containing bacteria can survive the temperature regimes imposed by entry into the Earth's lower atmosphere. This is an important step in demonstrating that life on Earth did not evolve in isolation from the remainder of the universe.

2007 ◽  
Vol 6 (3) ◽  
pp. 241-248 ◽  
Author(s):  
J. Chela-Flores

AbstractWe discuss whether it is possible to test the universality of biology, a quest that is of paramount relevance for one of its most recent branches, namely astrobiology. We review this topic in terms of the relative roles played on the Earth biota by contingency and evolutionary convergence. Following the seminal contribution of Darwin, it is reasonable to assume that all forms of life known to us so far are not only terrestrial, but are descendants of a common ancestor that evolved on this planet at the end of a process of chemical evolution. We also raise the related question of whether the molecular events that were precursors to the origin of life on Earth are bound to occur elsewhere in the Universe, wherever the environmental conditions are similar to the terrestrial ones. We refer to ‘cosmic convergence’ as the possible occurrence elsewhere in the Universe of Earth-like environmental conditions. We argue that cosmic convergence is already suggested by observational data. The set of hypotheses for addressing the question of the universality of biology can be tested by future experiments that are feasible with current technology. We focus on landing on Europa and the broader implications of selecting the specific example of the right landing location. We have previously discussed the corresponding miniaturized equipment that is already in existence. The significance of these crucial points needs to be put into a wider scientific perspective, which is one of the main objectives of this review.


DIALOGO ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 233-251
Author(s):  
Andreas May

"A synthesis of research results of modern natural sciences and fundamental statements of the Christian faith is attempted. The creation of the universe is addressed. Four important events in the history of the Earth as well as the diversity of living beings are shortly discussed. There are good reasons to believe that the universe was created by a transcendent superior being, which we call God, and that this superior being intervened in evolution and Earth history to promote the development of intelligent life. Furthermore, it can be concluded that intelligent life is very rare in the universe. This is the explanation for the “Fermi paradox”. Intelligent life on planet Earth has cosmic significance. The overabundance of this universe inspires the hope for participating in the fulfilled eternity of the Creator in transcendence. Prehistoric humans had long had hope for life after biological death. While scientific speculation about the end of the universe prophesies scenarios of destruction, the Christian faith says that humanity is destined to be united with Jesus Christ. Furthermore, all evolution will be completed with the Creator in transcendence. Then the whole of creation will “obtain the freedom of the glory of the children of God”. From the first primitive living cell, an abundance of the most diverse living beings has evolved. Comparably, humanity has differentiated into a plethora of different cultures. This entire abundance will find its unification and fulfilment in transcendence with the Creator of the universe, without its diversity being erased."


1989 ◽  
Vol 116 (1) ◽  
pp. 439-462
Author(s):  
Joseph N. Marcus ◽  
Margaret A. Olsen

AbstractOrganic chemicals — compounds that contain carbon — are the substance of life and pervade the universe. Is there a connection between comets, which are rich in prebiotic organics, and the origin of life? Current concepts of biomolecular evolution are first reviewed, including the important paradigm of catalytic RNA. At the very least, impacting comets appear to have supplied a substantial fraction of the volatile elements required for life shortly after the Earth formed. Some impacting material may even have survived chemically intact to directly provide necessary complex prebiotic organic chemicals. For life to originate and evolve in comets themselves, liquid H2O would be absolutely required: arguments for and against 26Al radiogenic melting of cometary cores are presented. Cometary panspermia, if theoretically possible, is not necessary to explain the origin of life on Earth. The Halley spacecraft provide evidence against Earth-type microorganisms in this comet’s dust.


Author(s):  
Joyce Gosata Maphanyane ◽  
Read Brown Mthanganyika Mapeo ◽  
Modupe O. Akinola

This chapter is a continuation from Chapter 1. The two chapters draw attention to discussions on the Earth and its systems, which are driven by the outer motion of the Solar System. It gives an analytical view of what is known about the Universe. It elaborates upon the Earth's structure and the associated spheres and their interactions. These interactions account for activities that form the whole Earth dynamism, which manifest as tectonic movements, polar wondering and magnetic reversals, seasonal changes, hydrological cycle, atmospheric processes and life on Earth as a whole. The study of these is a fundamental component of geospatial science research.


Impact! ◽  
1996 ◽  
Author(s):  
Gerrit L. Verschuur

As we apprehend the likelihood of an almost inconceivable cosmic impact occurring again at some time in the future, it is worth considering how we got to be here in the first place. The quest for an explanation of our origins is, of course, as old as the ability of humans to conceptualize questions and consider answers. Our species has probably been able to do that for hundreds of thousands of years, since well before evidence of its ability to comprehend was etched in cave paintings, perhaps back in an age when stone tools began to be patiently chipped out of flint rock. But when questions about origins were first hesitatingly formulated, answers could only be invented. There was no way any human beings could have known back then what we know now about the nature of the universe and its contents. Our collective ability to understand the world in which we live received an enormous impetus starting about 400 years ago when the scientific method for approaching reality was first practiced. That was when it was discovered that through experiment and observation, and above all through measurement, it became possible to unravel the secrets of the universe. That was when Galileo first pointed a telescope at the heavens, William Gilbert experimented with natural magnets, and Johannes Kepler discovered the laws of planetary motion. Since then, our species has gathered a stunning new perspective on the nature of this universe and its origins, a perspective that has relegated to the back burner of human thought most of the fantasies that have so long held sway over the human mind. As a result of the high technology that has emerged during this century, scientists have learned to probe into the depths of matter and into the farthest reaches of space. In the course of this exploration, astronomers, in particular, have learned that the universe has its roots in awesome violence and that the birth of the earth and moon were accompanied by what, from our perspective, would be considered catastrophic events. Were anything remotely similar to occur today, all life on earth would be instantly terminated.


2018 ◽  
Vol 8 (1) ◽  
pp. 49-66
Author(s):  
Monika Szuba

The essay discusses selected poems from Thomas Hardy's vast body of poetry, focusing on representations of the self and the world. Employing Maurice Merleau-Ponty's concepts such as the body-subject, wild being, flesh, and reversibility, the essay offers an analysis of Hardy's poems in the light of phenomenological philosophy. It argues that far from demonstrating ‘cosmic indifference’, Hardy's poetry offers a sympathetic vision of interrelations governing the universe. The attunement with voices of the Earth foregrounded in the poems enables the self's entanglement in the flesh of the world, a chiasmatic intertwining of beings inserted between the leaves of the world. The relation of the self with the world is established through the act of perception, mainly visual and aural, when the body becomes intertwined with the world, thus resulting in a powerful welding. Such moments of vision are brief and elusive, which enhances a sense of transitoriness, and, yet, they are also timeless as the self becomes immersed in the experience. As time is a recurrent theme in Hardy's poetry, this essay discusses it in the context of dwelling, the provisionality of which is demonstrated in the prevalent sense of temporality, marked by seasons and birdsong, which underline the rhythms of the world.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Author(s):  
David Fisher

There are eight columns in the Periodic Table. The eighth column is comprised of the rare gases, so-called because they are the rarest elements on earth. They are also called the inert or noble gases because, like nobility, they do no work. They are colorless, odorless, invisible gases which do not react with anything, and were thought to be unimportant until the early 1960s. Starting in that era, David Fisher has spent roughly fifty years doing research on these gases, publishing nearly a hundred papers in the scientific journals, applying them to problems in geophysics and cosmochemistry, and learning how other scientists have utilized them to change our ideas about the universe, the sun, and our own planet. Much Ado about (Practically) Nothing will cover this spectrum of ideas, interspersed with the author's own work which will serve to introduce each gas and the important work others have done with them. The rare gases have participated in a wide range of scientific advances-even revolutions-but no book has ever recorded the entire story. Fisher will range from the intricacies of the atomic nucleus and the tiniest of elementary particles, the neutrino, to the energy source of the stars; from the age of the earth to its future energies; from life on Mars to cancer here on earth. A whole panoply that has never before been told as an entity.


Among the celestial bodies the sun is certainly the first which should attract our notice. It is a fountain of light that illuminates the world! it is the cause of that heat which main­tains the productive power of nature, and makes the earth a fit habitation for man! it is the central body of the planetary system; and what renders a knowledge of its nature still more interesting to us is, that the numberless stars which compose the universe, appear, by the strictest analogy, to be similar bodies. Their innate light is so intense, that it reaches the eye of the observer from the remotest regions of space, and forcibly claims his notice. Now, if we are convinced that an inquiry into the nature and properties of the sun is highly worthy of our notice, we may also with great satisfaction reflect on the considerable progress that has already been made in our knowledge of this eminent body. It would require a long detail to enumerate all the various discoveries which have been made on this subject; I shall, therefore, content myself with giving only the most capital of them.


Sign in / Sign up

Export Citation Format

Share Document