scholarly journals The NIR arm of SHARK: System for coronagraphy with High-order Adaptive optics from R to K bands

2014 ◽  
Vol 14 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Jacopo Farinato ◽  
Carlo Baffa ◽  
Andrea Baruffolo ◽  
Maria Bergomi ◽  
Luca Carbonaro ◽  
...  

AbstractSHARK is a proposal aimed at investigating the technical feasibility and the scientific capabilities of high-contrast cameras to be implemented at the Large Binocular Telescope (LBT). SHARK foresees two separated channels: near-infrared (NIR) channel and visible, both providing imaging and coronagraphic modes. We describe here the SHARK instrument concept, with particular emphasis on the NIR channel at the level of a conceptual study, performed in the framework of the call for proposals for new LBT instruments. The search for giant extra-Solar planets is the main science case, as we will outline in the paper.

2020 ◽  
Vol 644 ◽  
pp. A114
Author(s):  
M. Kasper ◽  
K. K. R. Santhakumari ◽  
T. M. Herbst ◽  
R. van Boekel ◽  
F. Menard ◽  
...  

Aims. T Tauri remains an enigmatic triple star for which neither the evolutionary state of the stars themselves, nor the geometry of the complex outflow system is completely understood. Eight-meter class telescopes equipped with state-of-the-art adaptive optics provide the spatial resolution necessary to trace tangential motion of features over a timescale of a few years, and they help to associate them with the different outflows. Methods. We used J-, H-, and K-band high-contrast coronagraphic imaging with VLT-SPHERE recorded between 2016 and 2018 to map reflection nebulosities and obtain high precision near-infrared (NIR) photometry of the triple star. We also present H2 emission maps of the ν = 1-0 S(1) line at 2.122 μm obtained with LBT-LUCI during its commissioning period at the end of 2016. Results. The data reveal a number of new features in the system, some of which are seen in reflected light and some are seen in H2 emission; furthermore, they can all be associated with the main outflows. The tangential motion of the features provides compelling evidence that T Tauri Sb drives the southeast–northwest outflow. T Tauri Sb has recently faded probably because of increased extinction as it passes through the southern circumbinary disk. While Sb is approaching periastron, T Tauri Sa instead has brightened and is detected in all our J-band imagery for the first time.


2018 ◽  
Vol 620 ◽  
pp. L10 ◽  
Author(s):  
F. Cantalloube ◽  
E. H. Por ◽  
K. Dohlen ◽  
J.-F. Sauvage ◽  
A. Vigan ◽  
...  

The latest generation of high-contrast instruments dedicated to exoplanets and circumstellar disk imaging are equipped with extreme adaptive optics and coronagraphs to reach contrasts of up to 10−4 at a few tenths of arcseconds in the near-infrared. The resulting image shows faint features, only revealed with this combination, such as the wind driven halo. The wind driven halo is due to the lag between the adaptive optics correction and the turbulence speed over the telescope pupil. However, we observe an asymmetry of this wind driven halo that was not expected when the instrument was designed. In this letter, we describe and demonstrate the physical origin of this asymmetry and support our explanation by simulating the asymmetry with an end-to-end approach. From this work, we find that the observed asymmetry is explained by the interference between the AO-lag error and scintillation effects, mainly originating from the fast jet stream layer located at about 12 km in altitude. Now identified and interpreted, this effect can be taken into account for further design of high-contrast imaging simulators, next generation or upgrade of high-contrast instruments, predictive control algorithms for adaptive optics, or image post-processing techniques.


2005 ◽  
Vol 1 (C200) ◽  
pp. 513-518 ◽  
Author(s):  
T. Fusco ◽  
G. Rousset ◽  
J.-L. Beuzit ◽  
D. Mouillet ◽  
K. Dohlen

2020 ◽  
Vol 495 (4) ◽  
pp. 4380-4391
Author(s):  
Carlos M Correia ◽  
Olivier Fauvarque ◽  
Charlotte Z Bond ◽  
Vincent Chambouleyron ◽  
Jean-François Sauvage ◽  
...  

ABSTRACT Advanced adaptive-optics (AO) systems will likely utilize pyramid wavefront sensors (PWFSs) over the traditional Shack–Hartmann sensor in the quest for increased sensitivity, peak performance and ultimate contrast. Here, we explain and quantify the PWFS theoretical limits as a means to highlight its properties and applications. We explore forward models for the PWFS in the spatial-frequency domain: these prove useful because (i) they emanate directly from physical-optics (Fourier) diffraction theory; (ii) they provide a straightforward path to meaningful error breakdowns; (iii) they allow for reconstruction algorithms with $O (n\, \log(n))$ complexity for large-scale systems; and (iv) they tie in seamlessly with decoupled (distributed) optimal predictive dynamic control for performance and contrast optimization. All these aspects are dealt with here. We focus on recent analytical PWFS developments and demonstrate the performance using both analytic and end-to-end simulations. We anchor our estimates on observed on-sky contrast on existing systems, and then show very good agreement between analytical and Monte Carlo performance estimates on AO systems featuring the PWFS. For a potential upgrade of existing high-contrast imagers on 10-m-class telescopes with visible or near-infrared PWFSs, we show, under median conditions at Paranal, a contrast improvement (limited by chromatic and scintillation effects) of 2×–5× when just replacing the wavefront sensor at large separations close to the AO control radius where aliasing dominates, and of factors in excess of 10× by coupling distributed control with the PWFS over most of the AO control region, from small separations starting with an inner working angle of typically 1–2 λ/D to the AO correction edge (here 20 λ/D).


2004 ◽  
Vol 221 ◽  
pp. 307-312
Author(s):  
Dániel Apai ◽  
Ilaria Pascucci ◽  
Hongchi Wang ◽  
Wolfgang Brandner ◽  
Thomas Henning ◽  
...  

We present results from our high-resolution, high-contrast imaging campaign targeting the circumstellar environments of young, nearby stars of different masses. The observations have been conducted using the ALFA/CA 3.5m and NACO UT4/VLT adaptive optics systems. In order to enhance the contrast we applied the methods PSF-subtraction and polarimetric differential imaging (PDI). The observations of young stars yielded the identification of numerous new companion candidates, the most interesting one being ∼ 0.5″ from FU Ori. We also obtained high-resolution near-infrared imaging of the circumstellar envelope of SU Aur and AB Aur. Our PDI of the TW Hya circumstellar disk traced back the disk emission as close as 0.1″ ≃ 6 AU from the star, the closest yet. Our results demonstrate the potential of the adaptive optics systems in achieving high-resolution and high-contrast imaging and thus in the study of circumstellar disks, envelopes and companions.


2019 ◽  
Vol 631 ◽  
pp. A155 ◽  
Author(s):  
J.-L. Beuzit ◽  
A. Vigan ◽  
D. Mouillet ◽  
K. Dohlen ◽  
R. Gratton ◽  
...  

Observations of circumstellar environments that look for the direct signal of exoplanets and the scattered light from disks have significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing, and data processing, together with a consistent global system analysis have brought about a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive imagers is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE), which was designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs, and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), were designed to efficiently cover the near-infrared range in a single observation for an efficient search of young planets. The third instrument, ZIMPOL, was designed for visible polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. These three scientific instruments enable the study of circumstellar environments at unprecedented angular resolution, both in the visible and the near-infrared. In this work, we thoroughly present SPHERE and its on-sky performance after four years of operations at the VLT.


2021 ◽  
Author(s):  
Mathis Houllé ◽  
Arthur Vigan ◽  
Alexis Carlotti ◽  
Élodie Choquet ◽  
Faustine Cantalloube ◽  
...  

<p>Combining high-contrast imaging with medium-resolution spectroscopy has recently been shown to significantly boost the direct detection of exoplanets. In this optic, HARMONI, one of the first-light instruments to be mounted on ESO's ELT, will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. When combined, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. We will present in this talk the results of extensive simulations of exoplanet observations with the HARMONI high-contrast module. We used an end-to-end model of the instrument to simulate observations based on realistic observing scenarios and conditions. We then analyzed these observations with the so-called "molecule mapping" technique, which has shown in recent studies its efficiency to disentangle planetary companions from their host star and boost their signal. Although HARMONI has not been fully designed for high-contrast imaging, we will show that it should greatly outperform the current dedicated instruments, such as SPHERE on the VLT. We detect planets above 5σ in 2 hours at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. Simulating planets from population synthesis models, we could image in this amount of time companions as close as 1 AU from a host star at 30 pc and as light as 2 M<sub>Jup</sub>. We show that taking advantage of the combination of high-contrast imaging and medium-resolution spectroscopy through molecule mapping allows us to access much fainter planets (up to 2.5 mag) than the standard high-contrast imaging techniques. We also demonstrate that HARMONI should be available for near-critical exoplanet observations with this method during 60 to 70% of telescope time at the ELT.</p>


2020 ◽  
Vol 501 (2) ◽  
pp. 2305-2315
Author(s):  
Alice Zurlo ◽  
Lucas A Cieza ◽  
Megan Ansdell ◽  
Valentin Christiaens ◽  
Sebastián Pérez ◽  
...  

ABSTRACT We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus molecular cloud with NACO at the Very Large Telescope (VLT) to identify (sub)stellar companions down to ∼20-au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre Atacama Large Millimetre/sub-millimetre Array (ALMA) data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (Mdust > 50 M⊕) and largest (Rdust > 70 au) discs are only seen around stars lacking visual companions (with separations of 20–4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of >200 PMS stars in the Ophiuchus molecular cloud, the distributions of disc masses and sizes are similar for single and multiple systems for Mdust < 50 M⊕ and radii Rdust < 70 au. Such discs correspond to ∼80–90 per cent of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations >20 au mostly affect discs in the upper 10${{\ \rm per\ cent}}$ of the disc mass and size distributions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


Sign in / Sign up

Export Citation Format

Share Document