Validation of QTLs associated with spikelets per panicle and grain weight in rice

2014 ◽  
Vol 12 (S1) ◽  
pp. S151-S154 ◽  
Author(s):  
Sang-Min Yeo ◽  
Yeo-Tae Yun ◽  
Dong-Min Kim ◽  
Chong-Tae Chung ◽  
Sang-Nag Ahn

In this study, a near-isogenic line (BC4F10) CR572 developed by introgressing a chromosomal segment from Oryza rufipogon (accession no. 105491) into the Oryza sativa subsp. japonica cv. Hwaseong was found to exhibit a significant increase in the number of spikelets per panicle (SPP) and grain weight compared with the recurrent parent Hwaseong. Quantitative trait locus (QTL) analysis in F2 generation derived from the cross between CR572 and Hwaseong revealed that two QTLs, qSPP1 and qTGW1, were linked to a simple sequence repeat marker, RM283, on chromosome 1. The additive effect of the O. rufipogon allele at qSPP1 was 13 SPP, and 21.6% of the phenotypic variance was explained by the segregation of RM283. The qTGW1 QTL explained 19.1% of the phenotypic variance for grain weight. Substitution mapping was carried out with five F3 lines derived from F2 plants having informative recombination breakpoints within the target region. Substitution mapping indicated the linkage of qSPP1 and qTGW1. The grain yield of CR572 was 18.2 and 15.8% higher than that of Hwaseong at two locations, respectively, mainly due to the increase in 1000-grain weight and SPP. These results are very useful for QTL cluster transfer by molecular marker-assisted selection in rice breeding programmes and for QTL gene cloning by map-based cloning.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-chen Cheng ◽  
Guan Li ◽  
Man Yin ◽  
Tosin Victor Adegoke ◽  
Yi-feng Wang ◽  
...  

AbstractGrain size and weight are the key traits determining rice quality and yield and are mainly controlled by quantitative trait loci (QTL). In this study, one minor QTL that was previously mapped in the marker interval of JD1009-JD1019 using the Huanghuazhan/Jizi1560 (HHZ/JZ1560) recombinant inbred line (RIL) population, qTGW1-2, was validated to regulate grain size and weight across four rice-growing seasons using twenty-one near isogenic line (NIL)-F2 populations. The twenty-one populations were in two types of genetic background that were derived from the same parents HHZ and JZ1560. Twelve F9, F10 or F11 NIL-F2 populations with the sequential residual heterozygous regions covering JD1009-RM6840 were developed from one residual heterozygote (RH) in the HHZ/JZ1560 RIL population, and the remaining nine BC3F3, BC3F4 or BC3F5 NIL-F2 populations with the sequential residual heterozygous regions covering JD1009-RM6840 were constructed through consecutive backcrosses to the recurrent parent HHZ followed with marker assistant selection in each generation. Based on the QTL analysis of these genetic populations, qTGW1-2 was successfully confirmed to control grain length, width and weight and further dissected into two QTLs, qTGW1-2a and qTGW1-2b, which were respectively narrowed down to the marker intervals of JD1139-JD1127 (~ 978.2-kb) and JD1121-JD1102 (~ 54.8-kb). Furthermore, the two types of NIL-F2 populations were proved to be able to decrease the genetic background noise and increase the detection power of minor QTL. These results provided an important basis for further map-based cloning and molecular design breeding with the two QTLs in rice.


2020 ◽  
Vol 21 (11) ◽  
pp. 3960 ◽  
Author(s):  
Tao Liu ◽  
Lijun Wu ◽  
Xiaolong Gan ◽  
Wenjie Chen ◽  
Baolong Liu ◽  
...  

Thousand-grain weight (TGW) is a very important yield trait of crops. In the present study, we performed quantitative trait locus (QTL) analysis of TGW in a doubled haploid population obtained from a cross between the bread wheat cultivar “Superb” and the breeding line “M321” using the wheat 55-k single-nucleotide polymorphism (SNP) genotyping assay. A genetic map containing 15,001 SNP markers spanning 2209.64 cM was constructed, and 9 QTLs were mapped to chromosomes 1A, 2D, 4B, 4D, 5A, 5D, 6A, and 6D based on analyses conducted in six experimental environments during 2015–2017. The effects of the QTLs qTgw.nwipb-4DS and qTgw.nwipb-6AL were shown to be strong and stable in different environments, explaining 15.31–32.43% and 21.34–29.46% of the observed phenotypic variance, and they were mapped within genetic distances of 2.609 cM and 5.256 cM, respectively. These novel QTLs may be used in marker-assisted selection in wheat high-yield breeding.


2021 ◽  
Vol 23 (1) ◽  
pp. 125
Author(s):  
Zi-Wei Zuo ◽  
Zhen-Hua Zhang ◽  
De-Run Huang ◽  
Ye-Yang Fan ◽  
Si-Bin Yu ◽  
...  

Grain weight and size are important traits determining grain yield and influencing grain quality in rice. In a previous study, a quantitative trait locus controlling thousand-grain weight (TGW) in rice, qTGW10-20.8, was mapped in a 70.7 kb region on chromosome 10. Validation of the candidate gene for qTGW10-20.8, OsMADS56 encoding a MADS-box transcription factor, was performed in this study. In a near-isogenic line (NIL) population segregated only at the OsMADS56 locus, NILs carrying the OsMADS56 allele of IRBB52 were 1.9% and 2.9% lower in TGW than NILs carrying the OsMADS56 allele of Teqing in 2018 and 2020, respectively. Using OsMADS56 knock-out mutants and overexpression transgenic plants, OsMADS56 was validated as the causal gene for qTGW10-20.8. Compared with the recipients, the TGW of the mutants was reduced by 6.0–15.0%. In these populations, decreased grain weight and size were associated with a reduction in the expression of OsMADS56. In transgenic populations of OsMADS56 driven by a strong constitutive promoter, grain weight and size of the positive plants were significantly higher than those of the negative plants. Haplotype analysis showed that the Teqing-type allele of OsMADS56 is the major type presented in cultivated rice and used in variety improvement. Cloning of OsMADS56 provides a new gene resource to improve grain weight and size through molecular design breeding.


Hypertension ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 643-648 ◽  
Author(s):  
Norbert Hübner ◽  
Young-Ae Lee ◽  
Klaus Lindpaintner ◽  
Detlev Ganten ◽  
Reinhold Kreutz

2021 ◽  
Author(s):  
xiaojun Niu ◽  
Zhenhua Zhang ◽  
Aye Nyein Chan ◽  
Yeyang Fan ◽  
Shaoqing Tang ◽  
...  

Abstract Background: Most agronomical traits of crops are complex traits controlled by several major quantitative trait locus (QTL) and many minor QTL. Grain size determines grain weight and influences rice appearance quality. Identification of minor QTL is important for understanding the genetic and molecular network regulating grain size in rice. Following previous identification of QTL for grain weight and size using populations derived from the Teqing/IRBB52 indica rice cross, one QTL, qTGW5/qGL5 having significant effects on grain weight and length, was targeted for validation, dissection and fine-mapping.Result: Firstly, the effect of qTGW5/qGL5 was validated using two near isogenic line (NIL) F2 populations. Then, qTGW5/qGL5 was dissected into two closely linked QTL for grain size using four sets of NILs with sequential segregating regions. One of them, qTGW5 with the IRBB52 alleles increased grain weight, length and width with the same allelic direction, was located within an 1896.4-kb region flanked by RM18865 and Fi25273. The other one, qGL5 controlling grain length, was further delimited into a 68.8-kb region using seven NIL-F2 populations. Six annotated genes were found in the qGL5 region, of which five showed nucleotide polymorphisms between the two parental lines. In three of the six annotated genes, significant expression differences were detected between qGL5-NILs.Conclusions: Two closely-linked QTL having small effects for grain size in rice were separated using NIL-derived populations. One of them, qGL5 was fine-mapped into a 68.8-kb region containing six annotated genes. Our work lays a foundation for cloning minor QTL for grain size and offers potential targets for marker-assisted breeding in rice.


2016 ◽  
Author(s):  
Daniel Fulop ◽  
Aashish Ranjan ◽  
Itai Ofner ◽  
Michael F. Covington ◽  
Daniel H. Chitwood ◽  
...  

ABSTRACTQuantitative Trait Locus (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the Solanum pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennelli. This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous Hidden Markov Model for genotyping the lines, and by using state of the art sparse regression techniques for QTL mapping.


2008 ◽  
Vol 53 (15) ◽  
pp. 2326-2332 ◽  
Author(s):  
ShouWu Yu ◽  
ChangDeng Yang ◽  
YeYang Fan ◽  
JieYun Zhuang ◽  
XiMing Li

Sign in / Sign up

Export Citation Format

Share Document