scholarly journals Evidence for Lithium Destruction and Synthesis in Main-Sequence and Subgiant Stars of about Solar Mass

1968 ◽  
Vol 1 ◽  
pp. 233-236
Author(s):  
M. W. Feast

Herbig’s extensive work on lithium abundances in solar-type stars on and near the main sequence, suggested to him that for these stars the lithium abundance might be some simple, decreasing function of age. If this were the full story we should expect a low lithium abundance in subgiants of about solar mass. However, already in Herbig’s work there were one or two stars with lithium abundance about 10 times the Greenstein-Richardson solar value whose trigonometrical parallaxes showed them to be possible subgiants. Other subgiants with high lithium abundances have been found by Wallerstein and at Pretoria. These results suggest that solar-mass stars are able to synthesise fresh lithium in or just prior to their subgiant phase.

2019 ◽  
Vol 632 ◽  
pp. A6 ◽  
Author(s):  
F. Gallet ◽  
C. Zanni ◽  
L. Amard

Context. The early pre-main sequence phase during which solar-mass stars are still likely surrounded by an accretion disk represents a puzzling stage of their rotational evolution. While solar-mass stars are accreting and contracting, they do not seem to spin up substantially. Aims. It is usually assumed that the magnetospheric star-disk interaction tends to maintain the stellar rotation period constant (“disk-locking”), but this hypothesis has never been thoroughly verified. Our aim is to investigate the impact of the star-disk interaction mechanism on the stellar spin evolution during the accreting pre-main sequence phases. Methods. We devised a model for the torques acting on the stellar envelope based on studies of stellar winds, and we developed a new prescription for the star-disk coupling founded on numerical simulations of star-disk interaction and magnetospheric ejections. We then used this torque model to follow the long-term evolution of the stellar rotation. Results. Strong dipolar magnetic field components up to a few kG are required to extract enough angular momentum so as to keep the surface rotation rate of solar-type stars approximately constant for a few Myr. Furthermore an efficient enough spin-down torque can be provided by either one of the following: a stellar wind with a mass outflow rate corresponding to ≈10% of the accretion rate, or a lighter stellar wind combined with a disk that is truncated around the corotation radius entering a propeller regime. Conclusions. Magnetospheric ejections and accretion powered stellar winds play an important role in the spin evolution of solar-type stars. However, kG dipolar magnetic fields are neither uncommon or ubiquitous. Besides, it is unclear how massive stellar winds can be powered while numerical models of the propeller regime display a strong variability that has no observational confirmation. Better observational statistics and more realistic models could contribute to help lessen our calculations’ requirements.


2009 ◽  
Vol 5 (S266) ◽  
pp. 143-148
Author(s):  
Francesca Primas ◽  
Karin Lind ◽  
Corinne Charbonnel ◽  
Frank Grundahl ◽  
Martin Asplund

AbstractThe primordial lithium abundance inferred from WMAP and standard Big Bang nucleosysnthesis is approximately three times higher than the plateau value measured in old metal-poor Population II stars, suggesting that these stars have undergone atmospheric Li depletion. To constrain the physics responsible for such depletion, we conducted a homogeneous analysis of a large sample of stars in the metal-poor globular cluster NGC 6397, covering all evolutionary phases from below the main-sequence turnoff to high up the red-giant branch (RGB). The dwarf, turnoff, and early subgiant stars form a thin abundance plateau, with a sharpe edge in the middle of the subgiant branch, where Li dilution caused by the inward extension of the convective envelope starts (the beginning of the so-called first dredge up). A second steep abundance drop is seen at the RGB bump, again highlighting the need for the onset of nonstandard mixing in this evolutionary phase. Moreover, by also measuring the sodium abundances of the targets, we have gained insight into the degree of pollution by early cluster self-enrichement, and may separate highly polluted, Li-poor and Na-rich stars from stars formed from pristine material. Our observational findings strictly limit both the extent of lithium surface depletion, which in turn constrains the efficiency of mixing below the outer convection zone, and the resulting spread in lithium abundance in metal-poor turn-off stars.


2018 ◽  
Vol 618 ◽  
pp. A16 ◽  
Author(s):  
G. Harutyunyan ◽  
M. Steffen ◽  
A. Mott ◽  
E. Caffau ◽  
G. Israelian ◽  
...  

Context. Convective motions in solar-type stellar atmospheres induce Doppler shifts that affect the strengths and shapes of spectral absorption lines and create slightly asymmetric line profiles. One-dimensional (1D) local thermodynamic equilibrium (LTE) studies of elemental abundances are not able to reproduce this phenomenon, which becomes particularly important when modeling the impact of isotopic fine structure, like the subtle depression created by the 6Li isotope on the red wing of the Li I resonance doublet line. Aims. The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the 6Li/7Li isotopic ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects. Methods. The corrections for A(Li) and 6Li/7Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the Li I λ670.8 nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, log ℊ, [Fe/H], ν sin i, A(Li), 6Li/7Li). These are applied to adjust the 1D LTE isotopic lithium abundances in two solar-type stars, HD 207129 and HD 95456, for which high-quality HARPS observations are available. Results. The derived 3D NLTE corrections range between −0.01 and +0.11 dex for A(Li), and between −4.9 and −0.4% for 6Li/7Li, depending on the adopted stellar parameters. We confirm that the inferred 6Li abundance depends critically on the strength of the Si I 670.8025 nm line. Our findings show a general consistency with recent works on lithium abundance corrections. After the application of such corrections, we do not find a significant amount of 6Li in any of the two target stars. Conclusions. In the case of 6Li/7Li, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of 6Li (up to 4.9% points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.


1997 ◽  
Vol 161 ◽  
pp. 267-282 ◽  
Author(s):  
Thierry Montmerle

AbstractFor life to develop, planets are a necessary condition. Likewise, for planets to form, stars must be surrounded by circumstellar disks, at least some time during their pre-main sequence evolution. Much progress has been made recently in the study of young solar-like stars. In the optical domain, these stars are known as «T Tauri stars». A significant number show IR excess, and other phenomena indirectly suggesting the presence of circumstellar disks. The current wisdom is that there is an evolutionary sequence from protostars to T Tauri stars. This sequence is characterized by the initial presence of disks, with lifetimes ~ 1-10 Myr after the intial collapse of a dense envelope having given birth to a star. While they are present, about 30% of the disks have masses larger than the minimum solar nebula. Their disappearance may correspond to the growth of dust grains, followed by planetesimal and planet formation, but this is not yet demonstrated.


2019 ◽  
Vol 15 (S356) ◽  
pp. 403-404
Author(s):  
Negessa Tilahun Shukure ◽  
Solomon Belay Tessema ◽  
Endalkachew Mengistu

AbstractSeveral models of the solar luminosity, , in the evolutionary timescale, have been computed as a function of time. However, the solar mass-loss, , is one of the drivers of variation in this timescale. The purpose of this study is to model mass-loss varying solar luminosity, , and to predict the luminosity variation before it leaves the main sequence. We numerically computed the up to 4.9 Gyrs from now. We used the solution to compute the modeled . We then validated our model with the current solar standard model (SSM). The shows consistency up to 8 Gyrs. At about 8.85 Gyrs, the Sun loses 28% of its mass and its luminosity increased to 2.2. The model suggests that the total main sequence lifetime is nearly 9 Gyrs. The model explains well the stage at which the Sun exhausts its central supply of hydrogen and when it will be ready to leave the main sequence. It may also explain the fate of the Sun by making some improvements in comparison to previous models.


Author(s):  
Satoshi Honda ◽  
Yuta Notsu ◽  
Hiroyuki Maehara ◽  
Shota Notsu ◽  
Takuya Shibayama ◽  
...  
Keyword(s):  

1974 ◽  
Vol 59 ◽  
pp. 109-111
Author(s):  
A. Maeder

In spite of the rather good agreement between the theory of stellar evolution and the observations, there exist some difficulties when one compares closely the sequences of open star clusters and the theoretical isochrones. Several, if not all, of the old open star clusters seem to be concerned, especially those which are accurately measured, namely Praesepe, NGC 2360, 752, 3680 and M67. The problem concerns the gap occuring in the HR diagram at the end of the phase of hydrogen burning in the core; it corresponds to the phase of hydrogen exhaustion (or of overall contraction). The sequence of M67 has been studied by Racine (1971) and Torres-Peimbert (1971). The well apparent gap is located farther from the zero-age main sequence than indicated by the models and the hook towards a larger Teff predicted during this phase is not observed. Differences in chemical composition may not be held responsible for these anomalies. From Torres-Peimbert's models, it may be assumed that neither solar type, nor super metal rich composition are able to reduce the discrepancies. As a further illustration, let us mention the case of NGC 752. In Table I, the main features related to the gap are examined: the disagreement, like in M67, essentially concern features 1 and 2. The observations are based on a recent study of Grenon and Mermillod (1973) and on Bell's data (1972). Bell has also mentioned the existence of discrepancies. As in M67, the gap is too far from the zero-age main sequence and does not present any sudden turning towards a larger Teff.


Sign in / Sign up

Export Citation Format

Share Document