Diffraction

2012 ◽  
Vol 20 (2) ◽  
pp. 7-7
Author(s):  
Charles Lyman

This year marks the 100th anniversary of the discovery of X-ray diffraction and the 85th anniversary of electron diffraction (see Microscopy Pioneers). For most of the time since their introduction, microscopists have known these two techniques as the primary phase identification methods used in conjunction with various microscopies. However, these two diffraction methods also have played enormous roles in understanding the structure of matter, as well as the nature of both X rays and electrons.

1982 ◽  
Vol 37 (10) ◽  
pp. 1139-1146 ◽  
Author(s):  
Frieder Paasdie ◽  
Herbert Olbrich ◽  
Ute Schestag ◽  
Peter Lamparter ◽  
Siegfried Steeb

A “Scanning High Energy Electron Diffraction”-(SHEED-)apparatus is described with which the intensity curves of elastically scattered electrons are obtained within a few minutes. The elimination of the inelastic background is done by means of an electrostatic filter with an energy resolution of 104, which is only limited by the line width of the beam producing system. The intensity curves obtained experimentally are corrected for multiple scattering.The pair correlation functions of amorphous Germanium as obtained by electron and X-ray diffraction are compared. The electron diffraction curves agree well with the corresponding curves of other authors. The same stands for the curves obtained with X-rays. The differences between the curves obtained with electrons and X-rays are discussed.


IUCrJ ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 267-282 ◽  
Author(s):  
Yifeng Yun ◽  
Xiaodong Zou ◽  
Sven Hovmöller ◽  
Wei Wan

Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1080-C1080
Author(s):  
Yifeng Yun ◽  
Wei Wan ◽  
Faiz Rabbani ◽  
Jie Su ◽  
Sven Hovmöller ◽  
...  

Electron Crystallography is an important technique for studying micro- and nano-sized crystals[1]. Crystals considered as powder by X-ray diffraction behave as single crystals by electron diffraction. Recently we developed a new method, Rotation Electron Diffraction (RED) for three-dimensional diffraction data collection by combining electron beam tilt with goniometer tilt on a transmission electron microscope (TEM)[2]. Here we apply the RED method on an unknown oxide sample in a Ni-Se-Cl-O system, which may show special physical properties, for example magnetic properties. The crystals in the sample were less than a few micrometers in sizes. Powder X-ray diffraction patterns of the sample could not be indexed by existing known phases. The sample was thus studied by TEM. Five 3D RED datasets were collected from five crystals with different morphologies using the software package RED. The data processing was also performed using the software RED-processing. The unit cell and space groups of all the five phases were obtained using RED and the structures of four of five phases were solved. Nearly all peaks in the powder X-ray diffraction pattern could be indexed using these five phases. To conclude, five phases from a powder sample have been identified using RED. RED is a powerful method for phase identification of multiphasic samples with nano-sized crystals.


2014 ◽  
Vol 47 (6) ◽  
pp. 2048-2054 ◽  
Author(s):  
Yifeng Yun ◽  
Wei Wan ◽  
Faiz Rabbani ◽  
Jie Su ◽  
Hongyi Xu ◽  
...  

Phase identification and structure characterization are important in synthetic and materials science. It is difficult to characterize the individual phases from multiphase crystalline powder samples, especially if some of the phases are unknown. This problem can be solved by combining rotation electron diffraction (RED) and powder X-ray diffraction (PXRD). Four phases were identified on the same transmission electron microscopy grid from a multiphase sample in the Ni–Se–O–Cl system, and their structures were solved from the RED data. Phase 1 (NiSeO3) was found in the Inorganic Crystal Structure Database using the information from RED. Phase 2 (Ni3Se4O10Cl2) is an unknown compound, but it is isostructural to Co3Se4O10Cl2, which was recently solved by single-crystal X-ray diffraction. Phase 3 (Ni5Se6O16Cl4H2) and Phase 4 (Ni5Se4O12Cl2) are new compounds. The fact that there are at least four different compounds in the as-synthesized material explains why the phase identification and structure determination could not be done by PXRD alone. The RED method makes phase identification from such multiphase powder samples much easier than would be the case using powder X-ray diffraction. The RED method also makes structure determination of submicrometre-sized crystals from multiphase samples possible.


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
Y. P. Lin ◽  
J. S. Xue ◽  
J. E. Greedan

A new family of high temperature superconductors based on Pb2Sr2YCu3O9−δ has recently been reported. One method of improving Tc has been to replace Y partially with Ca. Although the basic structure of this type of superconductors is known, the detailed structure is still unclear, and various space groups has been proposed. In our work, crystals of Pb2Sr2YCu3O9−δ with dimensions up to 1 × 1 × 0.25.mm and with Tc of 84 K have been grown and their superconducting properties described. The defects and crystal symmetry have been investigated using electron microscopy performed on crushed crystals supported on a holey carbon film.Electron diffraction confirmed x-ray diffraction results which showed that the crystals are primitive orthorhombic with a=0.5383, b=0.5423 and c=1.5765 nm. Convergent Beam Electron Diffraction (CBED) patterns for the and axes are shown in Figs. 1 and 2 respectively.


Author(s):  
M. Vallet-Regí ◽  
M. Parras ◽  
J.M. González-Calbet ◽  
J.C. Grenier

BaFeO3-y compositions (0.35<y<0.50) have been investigated by means of electron diffraction and microscopy to resolve contradictory results from powder X-ray diffraction data.The samples were obtained by annealing BaFeO2.56 for 48 h. in the temperature range from 980°C to 1050°C . Total iron and barium in the samples were determined using chemical analysis and gravimetric methods, respectively.In the BaFeO3-y system, according to the electron diffraction and microscopy results, the nonstoichiometry is accommodated in different ways as a function of the composition (y):In the domain between BaFeO2.5+δBaFeO2.54, compositional variations are accommodated through the formation of microdomains. Fig. la shows the ED pattern of the BaFeO2.52 material along thezone axis. The corresponding electron micrograph is seen in Fig. 1b. Several domains corresponding to the monoclinic BaFeO2.50 phase, intergrow with domains of the orthorhombic phase. According to that, the ED pattern of Fig. 1a, can be interpreted as formed by the superposition of three types of diffraction maxima : Very strong spots corresponding to a cubic perovskite, a set of maxima due to the superposition of three domains of the monoclinic phase along [100]m and a series of maxima corresponding to three domains corresponding to the orthorhombic phase along the [100]o.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


Sign in / Sign up

Export Citation Format

Share Document