scholarly journals Neuronal soma–satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors

2010 ◽  
Vol 6 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Yanping Gu ◽  
Yong Chen ◽  
Xiaofei Zhang ◽  
Guang-Wen Li ◽  
Congying Wang ◽  
...  

It has been known for some time that the somata of neurons in sensory ganglia respond to electrical or chemical stimulation and release transmitters in a Ca2+-dependent manner. The function of the somatic release has not been well delineated. A unique characteristic of the ganglia is that each neuronal soma is tightly enwrapped by satellite glial cells (SGCs). The somatic membrane of a sensory neuron rarely makes synaptic contact with another neuron. As a result, the influence of somatic release on the activity of adjacent neurons is likely to be indirect and/or slow. Recent studies of neuron–SGC interactions have demonstrated that ATP released from the somata of dorsal root ganglion neurons activates SGCs. They in turn exert complex excitatory and inhibitory modulation of neuronal activity. Thus, SGCs are actively involved in the processing of afferent information. In this review, we summarize our understanding of bidirectional communication between neuronal somata and SGCs in sensory ganglia and its possible role in afferent signaling under normal and injurious conditions. The participation of purinergic receptors is emphasized because of their dominant roles in the communication.

1992 ◽  
Vol 117 (4) ◽  
pp. 877-887 ◽  
Author(s):  
P Durbec ◽  
G Gennarini ◽  
C Goridis ◽  
G Rougon

The F3 molecule is a member of the immunoglobulin superfamily anchored to membranes by a glycane-phosphatidylinositol, and is predominantly expressed on subsets of axons of the central and peripheral nervous system. In a previous paper (Gennarini, G., P. Durbec, A. Boned, G. Rougon, and C. Goridis. 1991. Neuron. 6:595-606), we have established that F3 fulfills the operational definition of a cell adhesion molecule and that it stimulates neurite outgrowth when presented to sensory neurons as a surface component of transfected CHO cells. In the present study the question as to whether soluble forms of F3 would be functionally active was addressed in vitro on cultures of mouse dorsal root ganglion neurons. We observed that preparations enriched in soluble F3 had no effect on neuron attachment but enhanced neurite initiation and neurite outgrowth in a dose-dependent manner. By contrast, soluble NCAM-120 does not have any measurable effect on these phenomena. Addition of anti-F3 monovalent antibodies reduced the number of process-bearing neurons and the neuritic output per neuron to control values. Addition of cerebrospinal fluid, a natural source of soluble F3, also stimulated neurite extension, and this effect was partially blocked by anti-F3 antibodies. Our results suggest that the soluble forms of adhesive proteins with neurite outgrowth-promoting properties could act at a distance from their site of release in a way reminiscent of growth and trophic factors.


2001 ◽  
Vol 94 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Michael E. Bräu ◽  
Marc Dreimann ◽  
Andrea Olschewski ◽  
Werner Vogel ◽  
Gunter Hempelmann

Background Tetrodotoxin-resistant Na(+) channels play an important role in generation and conduction of nociceptive discharges in peripheral endings of small-diameter axons of the peripheral nervous system. Pathophysiologically, these channels may produce ectopic discharges in damaged nociceptive fibers, leading to neuropathic pain syndromes. Systemically applied Na(+) channel--blocking drugs can alleviate pain, the mechanism of which is rather unresolved. The authors investigated the effects of some commonly used drugs, i.e., lidocaine, mexiletine, carbamazepine, amitriptyline, memantine, and gabapentin, on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglia. Methods Tetrodotoxin-resistant Na(+) currents were recorded in the whole-cell configuration of the patch-clamp method in enzymatically dissociated dorsal root ganglion neurons of adult rats. Half-maximal blocking concentrations were derived from concentration-inhibition curves at different holding potentials (-90, -70, and -60 mV). Results Lidocaine, mexiletine, and amitriptyline reversibly blocked tetrodotoxin-resistant Na(+) currents in a concentration- and use-dependent manner. Block by carbamazepine and memantine was not use-dependent at 2 Hz. Gabapentin had no effect at concentrations of up to 3 mm. Depolarizing the membrane potential from -90 mV to -60 mV reduced the available Na(+) current only by 23% but increased the sensitivity of the channels to the use-dependent blockers approximately fivefold. The availability curve of the current was shifted by 5.3 mV to the left in 300 microm lidocaine. Conclusions Less negative membrane potential and repetitive firing have little effect on tetrodotoxin-resistant Na(+) current amplitude but increase their sensitivity to lidocaine, mexiletine, and amitriptyline so that concentrations after intravenous administration of these drugs can impair channel function. This may explain alleviation from pain by reducing firing frequency in ectopic sites without depressing central nervous or cardiac excitability.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Luisa Muratori ◽  
Giulia Ronchi ◽  
Stefania Raimondo ◽  
Stefano Geuna ◽  
Maria Giuseppina Giacobini-Robecchi ◽  
...  

The evidence of neurons generatedex novoin sensory ganglia of adult animals is still debated. In the present study, we investigated, using high resolution light microscopy and stereological analysis, the changes in the number of neurons in dorsal root ganglia after 30 days from a crush lesion of the rat brachial plexus terminal branches. Results showed, as expected, a relevant hypertrophy of dorsal root ganglion neurons. In addition, we reported, for the first time in the literature, that neuronal hypertrophy was accompanied by massive neuronal hyperplasia leading to a 42% increase of the number of primary sensory neurons. Moreover, ultrastructural analyses on sensory neurons showed that there was not a relevant neuronal loss as a consequence of the nerve injury. The evidence of BrdU-immunopositive neurons and neural progenitors labeled with Ki67, nanog, nestin, and sox-2 confirmed the stereological evidence of posttraumatic neurogenesis in dorsal root ganglia. Analysis of morphological changes following axonal damage in addition to immunofluorescence characterization of cell phenotype suggested that the neuronal precursors which give rise to the newly generated neurons could be represented by satellite glial cells that actively proliferate after the lesion and are able to differentiate toward the neuronal lineage.


2021 ◽  
Vol 22 (7) ◽  
pp. 3614
Author(s):  
Hirosato Kanda ◽  
Yanjing Yang ◽  
Shaoqi Duan ◽  
Yoko Kogure ◽  
Shenglan Wang ◽  
...  

Atractylodin (ATR) is a bioactive component found in dried rhizomes of Atractylodes lancea (AL) De Candolle. Although AL has accumulated empirical evidence for the treatment of pain, the molecular mechanism underlying the anti-pain effect of ATR remains unclear. In this study, we found that ATR increases transient receptor potential ankyrin-1 (TRPA1) single-channel activity in hTRPA1 expressing HEK293 cells. A bath application of ATR produced a long-lasting calcium response, and the response was completely diminished in the dorsal root ganglion neurons of TRPA1 knockout mice. Intraplantar injection of ATR evoked moderate and prolonged nociceptive behavior compared to the injection of allyl isothiocyanate (AITC). Systemic application of ATR inhibited AITC-induced nociceptive responses in a dose-dependent manner. Co-application of ATR and QX-314 increased the noxious heat threshold compared with AITC in vivo. Collectively, we concluded that ATR is a unique agonist of TRPA1 channels, which produces long-lasting channel activation. Our results indicated ATR-mediated anti-nociceptive effect through the desensitization of TRPA1-expressing nociceptors.


2015 ◽  
Vol 112 (16) ◽  
pp. 5213-5218 ◽  
Author(s):  
Yasunori Takayama ◽  
Daisuke Uta ◽  
Hidemasa Furue ◽  
Makoto Tominaga

The capsaicin receptor transient receptor potential cation channel vanilloid 1 (TRPV1) is activated by various noxious stimuli, and the stimuli are converted into electrical signals in primary sensory neurons. It is believed that cation influx through TRPV1 causes depolarization, leading to the activation of voltage-gated sodium channels, followed by the generation of action potential. Here we report that the capsaicin-evoked action potential could be induced by two components: a cation influx-mediated depolarization caused by TRPV1 activation and a subsequent anion efflux-mediated depolarization via activation of anoctamin 1 (ANO1), a calcium-activated chloride channel, resulting from the entry of calcium through TRPV1. The interaction between TRPV1 and ANO1 is based on their physical binding. Capsaicin activated the chloride currents in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV1 and ANO1. Similarly, in mouse dorsal root ganglion neurons, capsaicin-activated inward currents were inhibited significantly by a specific ANO1 antagonist, T16Ainh-A01 (A01), in the presence of a high concentration of EGTA but not in the presence of BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid]. The generation of a capsaicin-evoked action potential also was inhibited by A01. Furthermore, pain-related behaviors in mice treated with capsaicin, but not with αβ-methylene ATP, were reduced significantly by the concomitant administration of A01. These results indicate that TRPV1–ANO1 interaction is a significant pain-enhancing mechanism in the peripheral nervous system.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 585 ◽  
Author(s):  
Hernández ◽  
Konno ◽  
Salceda ◽  
Vega ◽  
Zaharenko ◽  
...  

In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent manner when preincubation application was used. While Sh5b did not show consistent results having both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences, the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with a significant ASIC inhibitory effect.


2003 ◽  
Vol 89 (5) ◽  
pp. 2459-2465 ◽  
Author(s):  
Jinghui Xie ◽  
Margaret P. Price ◽  
John A. Wemmie ◽  
Candice C. Askwith ◽  
Michael J. Welsh

The acid-sensing ion channels (ASICs) form cation channels that are transiently activated by extracellular protons. They are expressed in dorsal root ganglia (DRG) neurons and in the periphery where they play a function in nociception and mechanosensation. Previous studies showed that FMRFamide and related peptides potentiate H+-gated currents. To better understand this potentiation, we examined the effect of FMRFamide-related peptides on DRG neurons from wild-type mice and animals missing individual ASIC subunits. We found that FMRFamide and FRRFamide potentiated H+-gated currents of wild-type DRG in a dose-dependent manner. They increased current amplitude and slowed desensitization following a proton stimulus. Deletion of ASIC3 attenuated the response to FMRFamide-related peptides, whereas the loss of ASIC1 increased the response. The loss of ASIC2 had no effect on FMRFamide-dependent enhancement of H+-gated currents. These data suggest that FMRFamide-related peptides modulate DRG H+-gated currents through an effect on both ASIC1 and ASIC3 and that ASIC3 plays the major role. The recent discovery of RFamide-related peptides (RFRP) in mammals suggested that they might also modulate H+-gated current. We found that RFRP-1 slowed desensitization of H+-gated DRG currents, whereas RFRP-2 increased the peak amplitude. COS-7 cells heterologously expressing ASIC1 or ASIC3 showed similar effects. These results suggest that FMRFamide-related peptides, including the newly identified RFRPs, modulate H+-gated DRG currents through ASIC1 and ASIC3. The presence of several ASIC subunits, the diversity of FMRFamide-related peptides, and the distinct effects on H+-gated currents suggest the possibility of substantial complexity in modulation of current in DRG sensory neurons.


2000 ◽  
Vol 83 (5) ◽  
pp. 2533-2541 ◽  
Author(s):  
Chaoying Li

The antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) has been proposed to selectively antagonize the actions of ATP at P2X receptors. Whole cell patch-clamp recording techniques therefore were used to characterize PPADS inhibition of ATP-activated current in bullfrog dorsal root ganglion (DRG) neurons. PPADS, 0.5–10 μM, inhibited ATP-activated current in a concentration-dependent manner with an IC50 of 2.5 ± 0.03 μM. PPADS produced a gradual decline of ATP-activated current to a steady state, but this was not an indication of use dependence as the gradual declining component could be eliminated by exposure to PPADS before ATP application. In addition, ATP-activated current recovered completely from inhibition by PPADS in the absence of agonist. The slow onset of inhibition by PPADS was not apparently due to an action at an intracellular site as inclusion of 10 μM PPADS in the recording pipette neither affected the ATP response nor did it alter inhibition of the ATP response when 2.5 μM PPADS was applied externally. PPADS, 2.5 μM, decreased the maximal response to ATP by 51% without changing its EC50. PPADS inhibition of ATP-activated current was independent of membrane potential between −80 and +40 mV and did not involve a shift in the reversal potential of the current. The magnitude of PPADS inhibition of ATP-activated current was dependent on the duration of the prior exposure to PPADS. The time constants of both onset and offset of PPADS inhibition of ATP-activated current did not differ significantly with changes in ATP concentration from 1 to 5 μM. Recovery of ATP-activated current from PPADS inhibition also exhibited a slow phase that was not accelerated by the presence of agonist and was dependent on the concentration of PPADS. The apparent dissociation rate of PPADS from unliganded ATP-gated ion channels was much greater than the rate of the slow phase of recovery of ATP-activated current from PPADS inhibition. The results suggest that PPADS can inhibit P2X receptor function in a complex noncompetitive manner. PPADS produces a long-lasting inhibition that does not appear to result from open channel block but rather from an action at an allosteric site apparently accessible from the extracellular environment that involves a greatly reduced rate of dissociation from liganded versus unliganded ATP-gated ion channels.


Sign in / Sign up

Export Citation Format

Share Document