scholarly journals Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation

2021 ◽  
Vol 22 (7) ◽  
pp. 3614
Author(s):  
Hirosato Kanda ◽  
Yanjing Yang ◽  
Shaoqi Duan ◽  
Yoko Kogure ◽  
Shenglan Wang ◽  
...  

Atractylodin (ATR) is a bioactive component found in dried rhizomes of Atractylodes lancea (AL) De Candolle. Although AL has accumulated empirical evidence for the treatment of pain, the molecular mechanism underlying the anti-pain effect of ATR remains unclear. In this study, we found that ATR increases transient receptor potential ankyrin-1 (TRPA1) single-channel activity in hTRPA1 expressing HEK293 cells. A bath application of ATR produced a long-lasting calcium response, and the response was completely diminished in the dorsal root ganglion neurons of TRPA1 knockout mice. Intraplantar injection of ATR evoked moderate and prolonged nociceptive behavior compared to the injection of allyl isothiocyanate (AITC). Systemic application of ATR inhibited AITC-induced nociceptive responses in a dose-dependent manner. Co-application of ATR and QX-314 increased the noxious heat threshold compared with AITC in vivo. Collectively, we concluded that ATR is a unique agonist of TRPA1 channels, which produces long-lasting channel activation. Our results indicated ATR-mediated anti-nociceptive effect through the desensitization of TRPA1-expressing nociceptors.

2015 ◽  
Vol 112 (16) ◽  
pp. 5213-5218 ◽  
Author(s):  
Yasunori Takayama ◽  
Daisuke Uta ◽  
Hidemasa Furue ◽  
Makoto Tominaga

The capsaicin receptor transient receptor potential cation channel vanilloid 1 (TRPV1) is activated by various noxious stimuli, and the stimuli are converted into electrical signals in primary sensory neurons. It is believed that cation influx through TRPV1 causes depolarization, leading to the activation of voltage-gated sodium channels, followed by the generation of action potential. Here we report that the capsaicin-evoked action potential could be induced by two components: a cation influx-mediated depolarization caused by TRPV1 activation and a subsequent anion efflux-mediated depolarization via activation of anoctamin 1 (ANO1), a calcium-activated chloride channel, resulting from the entry of calcium through TRPV1. The interaction between TRPV1 and ANO1 is based on their physical binding. Capsaicin activated the chloride currents in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV1 and ANO1. Similarly, in mouse dorsal root ganglion neurons, capsaicin-activated inward currents were inhibited significantly by a specific ANO1 antagonist, T16Ainh-A01 (A01), in the presence of a high concentration of EGTA but not in the presence of BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid]. The generation of a capsaicin-evoked action potential also was inhibited by A01. Furthermore, pain-related behaviors in mice treated with capsaicin, but not with αβ-methylene ATP, were reduced significantly by the concomitant administration of A01. These results indicate that TRPV1–ANO1 interaction is a significant pain-enhancing mechanism in the peripheral nervous system.


2020 ◽  
Vol 295 (24) ◽  
pp. 8174-8185 ◽  
Author(s):  
Luyu Liu ◽  
Yevgen Yudin ◽  
Tibor Rohacs

The transient receptor potential vanilloid 1 (TRPV1) channel is activated by heat and by capsaicin, the pungent compound in chili peppers. Calcium influx through TRPV1 has been shown to activate a calcium-sensitive phospholipase C (PLC) enzyme and to lead to a robust decrease in phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] levels, which is a major contributor to channel desensitization. Diacylglycerol (DAG), the product of the PLC-catalyzed PI(4,5)P2 hydrolysis, activates protein kinase C (PKC). PKC is known to potentiate TRPV1 activity during activation of G protein–coupled receptors, but it is not known whether DAG modulates TRPV1 during desensitization. We found here that inhibition of diacylglycerol kinase (DAGK) enzymes reduces desensitization of native TRPV1 in dorsal root ganglion neurons as well as of recombinant TRPV1 expressed in HEK293 cells. The effect of DAGK inhibition was eliminated by mutating two PKC-targeted phosphorylation sites, Ser-502 and Ser-800, indicating involvement of PKC. TRPV1 activation induced only a small and transient increase in DAG levels, unlike the robust and more sustained increase induced by muscarinic receptor activation. DAGK inhibition substantially increased the DAG signal evoked by TRPV1 activation but not that evoked by M1 muscarinic receptor activation. Our results show that Ca2+ influx through TRPV1 activates PLC and DAGK enzymes and that the latter limits formation of DAG and negatively regulates TRPV1 channel activity. Our findings uncover a role of DAGK in ion channel regulation.


2007 ◽  
Vol 282 (46) ◽  
pp. 33868-33878 ◽  
Author(s):  
Marcus Semtner ◽  
Michael Schaefer ◽  
Olaf Pinkenburg ◽  
Tim D. Plant

Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca2+-permeable cation channels involved in receptor-mediated increases in intracellular Ca2+. TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca2+-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La3+ and Gd3+. This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC50 of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H+ on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H+ or Gd3+ that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H+ indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca2+ entry and depolarization.


2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


2013 ◽  
Vol 109 (7) ◽  
pp. 1704-1712 ◽  
Author(s):  
Michelino Puopolo ◽  
Alexander M. Binshtok ◽  
Gui-Lan Yao ◽  
Seog Bae Oh ◽  
Clifford J. Woolf ◽  
...  

QX-314 ( N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage-dependent sodium channels when applied internally to axons or neuronal cell bodies. Coapplication of external QX-314 with the transient receptor potential vanilloid 1 protein (TRPV1) agonist capsaicin produces long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX-314 entry into the neurons. We asked whether QX-314 entry occurs directly through TRPV1 channels or through a different pathway (e.g., pannexin channels) activated downstream of TRPV1 and whether QX-314 entry requires the phenomenon of “pore dilation” previously reported for TRPV1. With external solutions containing 10 or 20 mM QX-314 as the only cation, inward currents were activated by stimulation of both heterologously expressed and native TRPV1 channels in rat dorsal root ganglion neurons. QX-314-mediated inward current did not require pore dilation, as it activated within several seconds and in parallel with Cs-mediated outward current, with a reversal potential consistent with PQX-314/ PCs = 0.12. QX-314-mediated current was no different when TRPV1 channels were expressed in C6 glioma cells, which lack expression of pannexin channels. Rapid addition of QX-314 to physiological external solutions produced instant partial inhibition of inward currents carried by sodium ions, suggesting that QX-314 is a permeant blocker. Maintained coapplication of QX-314 with capsaicin produced slowly developing reduction of outward currents carried by internal Cs, consistent with intracellular accumulation of QX-314 to concentrations of 50–100 μM. We conclude that QX-314 is directly permeant in the “standard” pore formed by TRPV1 channels and does not require either pore dilation or activation of additional downstream channels for entry.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Vinicius M. Gadotti ◽  
Sun Huang ◽  
Gerald W. Zamponi

AbstractT-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund’s adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.


1999 ◽  
Vol 82 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Y. Valeyev ◽  
John C. Hackman ◽  
Alice M. Holohean ◽  
Patrick M. Wood ◽  
Jennifer L. Katz ◽  
...  

γ-Aminobutyric acid (GABA)-activated channels in embryonic (5–8 wk old) human dorsal root ganglion (DRG) neurons in dissociated culture were characterized by whole cell and single-channel techniques. All DRG neurons when held at negative holding membrane potentials displayed inward current to micromolar concentrations of GABA applied by pressure pulses from closely positioned micropipettes. The current was directly proportional to the concentration of GABA (EC50, 111 μM; Hill coefficient, 1.7). DRG neurons also responded to micromolar concentrations of pentobarbital and alphaxalone but not to cis-4-aminocrotonic acid (CACA), glycine, or taurine. Baclofen (100 μM) affected neither the holding currents nor K+ conductance (when patch pipettes were filled with 130 mM KCl) caused by depolarizing pulses. Whole cell GABA-currents were blocked by bicuculline, picrotoxin, and t-butylbicyclophosphorothionate (TBPS; all at 100 μM). The reversal potential of whole cell GABA-currents was close to the theoretical Cl− equilibrium potential, shifting with changes in intracellular Cl− concentration in a manner expected for Cl−-selective channels. The whole cell I-V curve for GABA-induced currents demonstrated slight outward rectification with nearly symmetrical outside and inside Cl− concentrations. Spectral analysis of GABA-induced membrane current fluctuations showed that the kinetic components were best fitted by a triple Lorentzian function. The apparent elementary conductance for GABA-activated Cl− channels determined from the power spectra was 22.6 pS. Single-channel recordings from cell-attached patches with pipettes containing 10 μM GABA indicated that GABA-activated channels have a main and a subconductance level with values of 30 and 19 pS, respectively. Mean open and closed times of the channel were characterized by two or three exponential decay functions, suggesting two or three open channel states and two closed states. Single channels showed a lack of rectification. The actions of GABA on cultured human embryonic DRG neurons are mediated through the activation of GABAA receptors with properties corresponding to those found in the CNS of human and other mammalian species but differing from those of cultured human adult DRG neurons.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 775
Author(s):  
Xingjuan Chen ◽  
Yaqian Duan ◽  
Ashley Riley ◽  
Megan Welch ◽  
Fletcher White ◽  
...  

Individuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.


1992 ◽  
Vol 117 (4) ◽  
pp. 877-887 ◽  
Author(s):  
P Durbec ◽  
G Gennarini ◽  
C Goridis ◽  
G Rougon

The F3 molecule is a member of the immunoglobulin superfamily anchored to membranes by a glycane-phosphatidylinositol, and is predominantly expressed on subsets of axons of the central and peripheral nervous system. In a previous paper (Gennarini, G., P. Durbec, A. Boned, G. Rougon, and C. Goridis. 1991. Neuron. 6:595-606), we have established that F3 fulfills the operational definition of a cell adhesion molecule and that it stimulates neurite outgrowth when presented to sensory neurons as a surface component of transfected CHO cells. In the present study the question as to whether soluble forms of F3 would be functionally active was addressed in vitro on cultures of mouse dorsal root ganglion neurons. We observed that preparations enriched in soluble F3 had no effect on neuron attachment but enhanced neurite initiation and neurite outgrowth in a dose-dependent manner. By contrast, soluble NCAM-120 does not have any measurable effect on these phenomena. Addition of anti-F3 monovalent antibodies reduced the number of process-bearing neurons and the neuritic output per neuron to control values. Addition of cerebrospinal fluid, a natural source of soluble F3, also stimulated neurite extension, and this effect was partially blocked by anti-F3 antibodies. Our results suggest that the soluble forms of adhesive proteins with neurite outgrowth-promoting properties could act at a distance from their site of release in a way reminiscent of growth and trophic factors.


Sign in / Sign up

Export Citation Format

Share Document