scholarly journals The Progenitor Stars of Core-Collapse Supernovae

2007 ◽  
Vol 3 (S250) ◽  
pp. 201-208
Author(s):  
Stephen J. Smartt ◽  
R. Mark Crockett ◽  
John J. Eldridge ◽  
Justyn R. Maund

AbstractKnowledge of the nature and mass of the progenitor stars of core-collapse supernovae are critical elements to test theoretical models of stellar evolution and stellar explosions. Here we describe the current limits and restrictions that can be placed on the progenitor stars of type II SNe and those of Ib/c. There are detections of some type II-P SN progenitors but the exploding stars that produce type Ib/c have eluded discovery. We discuss implications of these quantitative limits and the conclusions that we can now draw.

2021 ◽  
Vol 922 (1) ◽  
pp. 55
Author(s):  
Emma R. Beasor ◽  
Ben Davies ◽  
Nathan Smith

Abstract Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M ⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new M ̇ prescription calibrated to RSGs with initial masses between 10 and 25 M ⊙, which unlike previous prescriptions does not overestimate M ̇ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12–27 M ⊙ with the new M ̇ -prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M ⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.


2016 ◽  
Vol 12 (S329) ◽  
pp. 64-68
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk –69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ − 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ − 70 R⊙ of which six match nearly all the observational properties of Sk –69 °202.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 460-460
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe construct stellar evolution models until core collapse using KEPLER (Woosley & Heger (2007)) to reproduce the observed signatures of the blue supergiant (BSG) progenitor of SN 1987A. This is based on the binary merger scenario proposed by Podsiadlowski (1992) and Ivanova et al. (2002). Various combinations of initial parameters for the binary components (M1=16–18 M⊙ and M2=5–10 M⊙) and their merging, successfully match the He, N/C and N/O ratios, along with the luminosity and effective temperature of the progenitor. Most of our models end their lives as BSGs. Thus we may be able to explain the origin of all Type IIP SNe that resemble SN 1987A through such mergers. We are currently working on the light curves and nuclear yields from the explosion of these models to compare them SN 1987A.


Author(s):  
Schuyler D. Van Dyk

To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope . I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion. This article is part of the themed issue ‘Bridging the gap: from massive stars to supernovae’.


2004 ◽  
Vol 218 ◽  
pp. 29-32 ◽  
Author(s):  
Schuyler D. Van Dyk ◽  
Weidong Li ◽  
Alexei V. Filippenko

Identifying the massive progenitor stars that give rise to core-collapse supernovae (SNe) is one of the main pursuits of supernova and stellar evolution studies, and is essential for understanding the birth of pulsars. Using ground-based images of recent, nearby SNe obtained primarily with the Katzman Automatic Imaging Telescope (KAIT), astrometry from 2MASS, and archival images from the Hubble Space Telescope (HST), we have attempted the direct identification of the progenitors of 16 Type II and Type Ib/c SNe. We may have identified the progenitors of the Type II SNe 1999br and 1999ev, the Type Ib SNe 2001B and 2001is, and the Type Ic SN 1999bu, possibly doubling the number of known SN progenitors. For the remaining SNe, limits placed on the absolute magnitude and color (when available) of the progenitor allows us to place limits on the progenitor's mass. Specifically, we have been able to place a relatively stringent limit on the progenitor of the Type II-P SN 2001du in NGC 1365, consistent with the limits placed on the masses of other Type II-P SNe. We have also recently identified the progenitor of the Type II-P SN 2003gd in Messier 74.


1985 ◽  
Vol 113 ◽  
pp. 139-160 ◽  
Author(s):  
Douglas C. Heggie

This review describes work on the evolution of a stellar system during the phase which starts at the end of core collapse. It begins with an account of the models of Hénon, Goodman, and Inagaki and Lynden-Bell, as well as evaporative models, and modifications to these models which are needed in the core. Next, these models are related to more detailed numerical calculations of gaseous models, Fokker-Planck models, N-body calculations, etc., and some problems for further work in these directions are outlined. The review concludes with a discussion of the relation between theoretical models and observations of the surface density profiles and statistics of actual globular clusters.


2019 ◽  
Vol 631 ◽  
pp. A5 ◽  
Author(s):  
Emmanouil Zapartas ◽  
Selma E. de Mink ◽  
Stephen Justham ◽  
Nathan Smith ◽  
Alex de Koter ◽  
...  

Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We used analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.


2018 ◽  
Vol 14 (S346) ◽  
pp. 397-416
Author(s):  
Michela Mapelli

AbstractWhat are the formation channels of merging black holes and neutron stars? The first two observing runs of Advanced LIGO and Virgo give us invaluable insights to address this question, but a new approach to theoretical models is required, in order to match the challenges posed by the new data. In this review, I discuss the impact of stellar winds, core-collapse and pair instability supernovae on the formation of compact remnants in both isolated and dynamically formed binaries. Finally, I show that dynamical processes, such as the runaway collision scenario and the Kozai-Lidov mechanism, leave a clear imprint on the demography of merging systems.


2020 ◽  
Vol 497 (2) ◽  
pp. 1895-1903 ◽  
Author(s):  
E C Wilson ◽  
J Nordhaus

ABSTRACT The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.


2020 ◽  
Vol 494 (4) ◽  
pp. 5230-5238
Author(s):  
Roni Anna Gofman ◽  
Naomi Gluck ◽  
Noam Soker

ABSTRACT We evolve stellar models with zero-age main-sequence (ZAMS) mass of MZAMS ≳ 18 M⊙ under the assumption that they experience an enhanced mass-loss rate when crossing the instability strip at high luminosities and conclude that most of them end as type Ibc supernovae (SNe Ibc) or dust-obscured SNe II. We explore what level of enhanced mass-loss rate during the instability strip would be necessary to explain the ‘red supergiant problem’. This problem refers to the dearth of observed core-collapse supernovae progenitors with MZAMS ≳ 18 M⊙. Namely, we examine what enhanced mass-loss rate could make it possible for all these stars actually to explode as core-collapse supernovae (CCSNe). We find that the mass-loss rate should increase by a factor of at least about 10. We reach this conclusion by analysing the hydrogen mass in the stellar envelope and the optical depth of the dusty wind at the explosion, and crudely estimate that under our assumptions only about a fifth of these stars explode as unobscured SNe II and SNe IIb. About 10–15 per cent end as obscured SNe II that are infrared-bright but visibly very faint, and the rest, about 65–70 per cent, end as SNe Ibc. However, the statistical uncertainties are still too significant to decide whether many stars with MZAMS ≳ 18 M⊙ do not explode as expected in the neutrino driven explosion mechanism, or whether all of them explode as CCSNe, as expected by the jittering jets explosion mechanism.


Sign in / Sign up

Export Citation Format

Share Document