scholarly journals Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae

2016 ◽  
Vol 12 (S329) ◽  
pp. 64-68
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk –69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ − 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ − 70 R⊙ of which six match nearly all the observational properties of Sk –69 °202.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 460-460
Author(s):  
Athira Menon ◽  
Alexander Heger

AbstractWe construct stellar evolution models until core collapse using KEPLER (Woosley & Heger (2007)) to reproduce the observed signatures of the blue supergiant (BSG) progenitor of SN 1987A. This is based on the binary merger scenario proposed by Podsiadlowski (1992) and Ivanova et al. (2002). Various combinations of initial parameters for the binary components (M1=16–18 M⊙ and M2=5–10 M⊙) and their merging, successfully match the He, N/C and N/O ratios, along with the luminosity and effective temperature of the progenitor. Most of our models end their lives as BSGs. Thus we may be able to explain the origin of all Type IIP SNe that resemble SN 1987A through such mergers. We are currently working on the light curves and nuclear yields from the explosion of these models to compare them SN 1987A.


2021 ◽  
Vol 922 (1) ◽  
pp. 55
Author(s):  
Emma R. Beasor ◽  
Ben Davies ◽  
Nathan Smith

Abstract Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M ⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new M ̇ prescription calibrated to RSGs with initial masses between 10 and 25 M ⊙, which unlike previous prescriptions does not overestimate M ̇ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12–27 M ⊙ with the new M ̇ -prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M ⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.


1988 ◽  
Vol 7 (4) ◽  
pp. 390-396
Author(s):  
N. Panagia

AbstractThe IUE observations of SN 1987A are presented and the most important results are briefly summarised. The photometric observations of SN 1987A are discussed in some detail in the context of the supernova energetics. Adding the information from spectroscopy and neutrino observations, it is concluded that SN 1987A is a ‘normal’ Type II explosion (i.e. core collapse of a massive star) with an unusually compact initial configuration, just as expected for the progenitor Sk −69°202.


2007 ◽  
Vol 3 (S250) ◽  
pp. 201-208
Author(s):  
Stephen J. Smartt ◽  
R. Mark Crockett ◽  
John J. Eldridge ◽  
Justyn R. Maund

AbstractKnowledge of the nature and mass of the progenitor stars of core-collapse supernovae are critical elements to test theoretical models of stellar evolution and stellar explosions. Here we describe the current limits and restrictions that can be placed on the progenitor stars of type II SNe and those of Ib/c. There are detections of some type II-P SN progenitors but the exploding stars that produce type Ib/c have eluded discovery. We discuss implications of these quantitative limits and the conclusions that we can now draw.


2020 ◽  
Vol 501 (1) ◽  
pp. 1059-1071
Author(s):  
A Reguitti ◽  
M L Pumo ◽  
P A Mazzali ◽  
A Pastorello ◽  
G Pignata ◽  
...  

ABSTRACT In this work, we present photometric and spectroscopic data of the low-luminosity (LL) Type IIP supernova (SN) 2018hwm. The object shows a faint (Mr = −15 mag) and very long (∼130 d) plateau, followed by a 2.7 mag drop in the r band to the radioactive tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000–1400 km s−1 range. The nebular spectrum, dominated by H α in emission, reveals weak emission from [O i] and [Ca ii] doublets. The absolute light curve and spectra at different phases are similar to those of LL SNe IIP. We estimate that 0.002 M⊙ of 56Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.055 foe, a progenitor radius of 215 R⊙, and a final progenitor mass of 9–10 M⊙. Finally, we performed a modelling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M(16O)$\approx 0.02\, \mathrm{ M}_{\odot }$, but a high M(40Ca) of 0.3 M⊙. The inferred low explosion energy, the low ejected 56Ni mass, and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a superasymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10–12 M⊙ red supergiant.


1980 ◽  
Vol 58 ◽  
pp. 537-544
Author(s):  
Richard L. Bowers ◽  
James R. Wilson

Abstract.Recent developments in the physics input for iron core collapse models of type II supernovae are reviewed. The effect of these developments on collapse calculations is also discussed. The inner core collapses homologously, with little change in specific entropy, bounces in the neighborhood of nuclear density, and sets up; an outward moving shock. In adiabatic models an explosion may result. The inclusion of neutrino effects may produce substantial shock damping. Current results indicate that core collapse, bounce and shock propagation does not produce an explosion when neutrino effects are included.


2017 ◽  
Vol 12 (S331) ◽  
pp. 33-38
Author(s):  
Christina C. Thöne ◽  
Antonio de Ugarte Postigo ◽  
Jose Groh

AbstractIn their final stages, massive stars can show large eruptions which can resemble core-collapse IIn SNe. Here we present SN 2015bh in NGC 2770, a IIn/impostor, where archival data show variabilities for at least 21 years before the main event in 2015. Serendipitous spectra during an outburst are the only SN progenitor spectra available since SN 1987A and show an LBV with a fast, dense outflow. Analogues to SN 2015bh are SN 2009ip and SNhunt 248 while the SN 2000ch impostor could be equivalent to the outburst phase of SN 2015bh. It is currently unclear whether SN 2015bh (and SN 2009ip) were final core-collapse events. Alternatively, they might be large outbursts shedding the outer envelope and creating a Wolf-Rayet star in only a matter of decades. Future large-scale high-cadence surveys such as LSST will detect many more of these events and allow us a unique insight into the largely unknown late stages of massive stellar evolution.


2019 ◽  
Vol 631 ◽  
pp. A5 ◽  
Author(s):  
Emmanouil Zapartas ◽  
Selma E. de Mink ◽  
Stephen Justham ◽  
Nathan Smith ◽  
Alex de Koter ◽  
...  

Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We used analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.


2019 ◽  
Vol 622 ◽  
pp. A70 ◽  
Author(s):  
Luc Dessart ◽  
D. John Hillier

Supernova (SN) 1987A was classified as a peculiar Type II SN because of its long rising light curve and the persistent presence of H I lines in optical spectra. It was subsequently realized that its progenitor was a blue supergiant (BSG), rather than a red supergiant (RSG) as for normal, Type II-P, SNe. Since then, the number of Type II-pec SNe has grown, revealing a rich diversity in photometric and spectroscopic properties. In this study, using a single 15 M⊙ low-metallicity progenitor that dies as a BSG, we have generated explosions with a range of energies and 56Ni masses. We then performed the radiative transfer modeling with CMFGEN, from 1 d until 300 d after explosion for all ejecta. Our models yield light curves that rise to optical maximum in about 100 d, with a similar brightening rate, and with a peak absolute V-band magnitude spanning −14 to −16.5 mag. All models follow a similar color evolution, entering the recombination phase within a few days of explosion, and reddening further until the nebular phase. Their spectral evolution is analogous, mostly differing in line width. With this model set, we study the Type II-pec SNe 1987A, 2000cb, 2006V, 2006au, 2009E, and 2009mw. The photometric and spectroscopic diversity of observed SNe II-pec suggests that there is no prototype for this class. All these SNe brighten to maximum faster than our limited set of models, except perhaps SN 2009mw. The spectral evolution of SN 1987A conflicts with other observations in this set and conflicts with model predictions from 20 d until maximum: Hα narrows and weakens while Ba II lines strengthen faster than expected, which we interpret as signatures of clumping. SN 2000cb rises to maximum in only 20 d and shows weak Ba II lines. Its spectral evolution (color, line width and strength) is well matched by an energetic ejecta but the light curve may require strong asymmetry. The persistent blue color, narrow lines, and weak Hα absorption, seen in SN 2006V conflicts with expectations for a BSG explosion powered by 56Ni and may require an alternative power source. In contrast with theoretical expectations, observed spectra reveal a diverse behavior for lines like Ba II 6142 Å, Na I D, and Hα. In addition to diversity arising from different BSG progenitors, we surmise that their ejecta are asymmetric, clumped, and, in some cases, not solely powered by 56Ni decay.


Sign in / Sign up

Export Citation Format

Share Document